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Abstrat

In this artile, we propose several quantization-based strati�ed sampling methods to redue the vari-

ane of a Monte Carlo simulation.

Theoretial aspets of strati�ation lead to a strong link between optimal quadrati quantization and

the variane redution that an be ahieved with strati�ed sampling. We �rst put the emphasis on the

onsisteny of quantization for partitioning the state spae in strati�ed sampling methods in both �nite

and in�nite dimensional ases. We show that the proposed quantization-based strata design has uniform

e�ieny among the lass of Lipshitz ontinuous funtionals.

Then a strati�ed sampling algorithm based on produt funtional quantization is proposed for path-

dependent funtionals of multi-fator di�usions. The method is also available for other Gaussian proesses

suh as Brownian bridge or Ornstein-Uhlenbek proesses. We derive in detail the ase of Ornstein-

Uhlenbek proesses.

We also study the balane between the algorithmi omplexity of the simulation and the variane

redution fator.

Keywords: funtional quantization, vetor quantization, strati�ation, variane redution, Monte Carlo

simulation, Karhunen-Loève, Gaussian proess, Brownian motion, Brownian bridge, Ornstein-Uhlenbek

proess, Ornstein-Uhlenbek bridge, prinipal omponent analysis, numerial integration, option priing,

Voronoi diagram, produt quantizer, path-dependent option.

Introdution

The quantization of a random variableX onsists of its approximation by a random variable Y taking �nitely

many values. This problem has been initially investigated for its appliations to signal transmission and for

ompression issues [8℄. In this ontext, quantization is a method of signal disretization. The aim is to

hoose the random variable Y so as to minimize the resulting error for a �xed quantization level N .

More reently, quantization was introdued in numerial probability to devise numerial integration

methods [24℄ and to solve multidimensional stohasti ontrol problems suh as the priing of Amerian

options [1℄ and swing options [2℄. Optimal quantization has many other appliations and extensions in

various �elds suh as automati lustering (quantization of empirial measures) and pattern reognition.

Sine the early 2000's, the in�nite-dimensional setting has been extensively investigated from both the-

oretial and numerial viewpoints with a speial attention paid to funtional quantization [18, 25℄. Bi-

measurable stohasti proesses are viewed as random variables valued in funtional spaes.

Still Monte Carlo simulations remain the most ommon numerial method in the �eld of numerial

probability. One reason is that it is easy to implement in an industrial on�guration. In the industry of

derivatives, banks implement generi Monte Carlo frameworks for priing and hedging their positions with

a wide variety of �nanial produts and models. Besides, Monte Carlo simulations are easily parallelized.
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Variane redution methods an be used to dramatially redue the omputation time of a Monte Carlo

simulation, or to inrease its auray. The main variane redution methods are (adaptive) ontrol variate,

pre-onditioning, importane sampling and strati�ation [9, 17℄. The problem is that these methods may

strongly depend on the payo� or the model and require signi�ant hanges in the pratial implementation

of the Monte Carlo simulation. Therefore, most pratitioners do not use the most sophistiated methods

exept for marginal ases.

In this artile, we point out theoretial aspets of quantization that idraw a strong link between the

problem of optimal quadrati quantization of a random variable and the variane redution that an be

ahieved by strati�ation. We emphasize the onsisteny of quantization for designing strata in strati�ed

sampling methods in both the �nite and in�nite dimensional settings. Then we devise a strati�ed sampling

algorithm based on produt funtional quantization for path-dependent funtionals of multi-fator Brownian

di�usions. We show that this strata design has uniform e�ieny among the lass of Lipshitz ontinuous

funtionals of Brownian motion. The simulation ost of the onditional path is O(n) where n is the number

of disretization dates as in the naive unonditioned Monte Carlo simulations. In this ontext, the proposed

approah an be onsidered as a guided Monte Carlo simulation (see Figure 5). The method is appliable

with any Gaussian proess as soon as we an derive its Karhunen-Loève expansion. This is the ase for

Brownian bridge and Ornstein-Uhlenbek proesses. The speial ase of Ornstein-Uhlenbek proesses is

detailed in Appendix A. The ase of the Ornstein-Uhlenbek bridge is presented in [6℄.

A very ommon situation is the ase of Monte Carlo simulations of multi-fator Brownian di�usions

approximated with an Euler disretization or another time-disretization sheme. The presented method is

partiularly well suited for this ase, regardless of how the Brownian paths are used in the model, to drive

the dynamis of the stok prie, a volatility proess or a drift term. Funtional strati�ation an be used as

a generi variane redution method whih does not require a reimplementation of the whole framework but

only the way it is input with Brownian paths.

The artile is organized as follows. Setion 1 presents some neessary bakground on optimal quantization.

The emphasis is on the funtional quantization of Gaussian proesses. Setion 2 brie�y overs the �rst

funtional quantization-based variane redution method that was proposed in [25, 16℄. Setion 3 outlines

the links between quantization and strati�ation with an emphasis on the Gaussian ase. The method is

further detailed in the in�nite-dimensional ase for Gaussian proesses in Setion 4. We present a simulation

method for the ase of Brownian motion and other examples of Gaussian proesses (suh as Brownian bridge

and Ornstein-Uhlenbek proesses) that preserves the O(n) simulation omplexity where n is the number

of time steps. In Setion 5, we provide numerial experiments of the method with option priing problems

arising in mathematial �nane. Appendix A presents the omputation of the Karhunen-Loève expansion

of Ornstein-Uhlenbek proesses. Appendix B presents the derivation of losed-form expressions of some

regression matries needed for our strati�ed sampling algorithm, in the ases of Brownian motion, Brownian

bridge and Ornstein-Uhlenbek proesses.

1 Vetor and funtional quantization

1.1 Introdution to quantization of random variables

Let (Ω,A,P) be a probability spae and (E, | · |) a re�exive separable Banah spae. The priniple of the

quantization of a random variable X taking its values in E is to approximate X by a random variable Y
taking a �nite number N of values in E. The disrete random variable Y is a quantizer of X of level N .

The resulting disretization error to be minimized is the Lp
norm of |X − Y |.

min {‖X − Y ‖p, Y : Ω→ E measurable, card(Y (Ω)) ≤ N} . (1)

De�nition 1 (Voronoi partition). Consider N ∈ N
∗
, Γ = {γ1, . . . , γN} ⊂ E and let C = {C1, . . . , CN} be a

Borel partition of E. C is a Voronoi partition assoiated with Γ if ∀i ∈ {1, . . . , N}, Ci ⊂ {ξ ∈ E, |ξ − γi| =
min

j∈{1,...,N}
|ξ − γj |}. Ci is alled Voronoi ell assoiated with γi in C.
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Proposition 1.1. Let X and Y be two random variables valued in E, where Y takes its values in the �xed set

of knots Γ = {γ1, . . . , γN} ⊂ E for N ∈ N
∗
. We de�ne X̂Γ := ProjΓ(X) where ProjΓ =

N∑
i=1

γi1Ci is a nearest

neighbor projetion onto Γ. Then we have

∣∣∣X − X̂Γ
∣∣∣ ≤ |X − Y | a.s. and thus

∥∥∥X − X̂Γ
∥∥∥
p
≤ ‖X − Y ‖p.

A onsequene is that solving (1) amounts to solving the simpler problem

min {‖X − ProjΓ(X)‖p, Γ ⊂ E, card(Γ) ≤ N} .

The quantity ‖X −ProjΓ(X)‖p is alled the mean Lp
quantization error. The problem of the existene of a

minimum is addressed in [22, 10℄ for the �nite-dimensional ase.

• For every N ≥ 1, the mean Lp
quantization error is Lipshitz ontinuous and reahes a minimum. An

N -tuple that ahieves the minimum has pairwise distint omponents, as soon as card(supp(PX)) ≥ N .

This result stands in the general ase of a random variable valued in a re�exive separable Banah spae [18℄.

• If the support of PX has in�nite ardinal, the optimal quantization error dereases, and onverges to

0 as the quantization level N goes to in�nity. In the �nite-dimensional ase, and for distributions that

are absolutely ontinuous with respet to the Lebesgue measure, the rate of onvergene is ruled by

Theorem 1.2.

Theorem 1.2 (Zador, Lushgy, Pagès). • (Sharp rate) Let r > 0 and X : Ω→ R
d ∈ Lr+η(P) for some

η > 0. Let PX(dξ) = φ(ξ)dξ+µ(dξ) be the anonial deomposition of PX (µ and the Lebesgue measure

are singular). Then, if φ 6≡ 0, the Lr
quantization error at level N , EN,r satis�es

EN,r(X,R
d) ∼

N→∞
J̃r,d ×

(∫

Rd

φ
d

d+r (u)du

) 1
d+

1
r

×N− 1
d , where J̃r,d ∈ (0,∞). (2)

• (Non-asymptoti upper bound) Let d ≥ 1. There exists Cd,r,η ∈ (0,∞) suh that, for every R
d
-valued

random vetor X,

∀N ≥ 1, EN,r(X,R
d) ≤ Cd,r,η‖X‖r+ηN

− 1
d . (3)

The �rst laim was stated for the ase of distributions with ompat support by Zador in [28℄. The extension

to general probability distributions in R
d
was developed in [4℄. The �rst mathematially rigorous proof an

be found in [10℄. The non-asymptoti error bound (3) is proved in [21℄.

In Figure 1, we display the Voronoi partition of a random N -quantizer and an optimal quadrati quantizer

of level N for the bivariate normal distribution N (0, I2).

1.2 Self-onsisteny of optimal quantizers

We now assume that E is a separable Hilbert spae (H, 〈·, ·〉H). We denote by CN (X) the set of L2
optimal

quantizers of X of level N , and by EN (X) the minimal quadrati distortion that an be ahieved when

approximating X by a quantizer of level N .

De�nition 2 (Stationarity). A quantizer Y of X is stationary (or self-onsistent) if

Y = E[X |Y ]. (4)

Proposition 1.3 (Stationarity of L2
optimal quantizers). A quadrati optimal quantizer is stationary.

We refer to [10℄ for the proof in the �nite-dimensional setting and to [18℄ for the more general ase of

separable Hilbert spaes. Stationarity is a partiularity of the quadrati ase (p = 2). In the general Lp

setting, a similar property involving the notion of p-enter holds [11℄.
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Figure 1: Voronoi partition of a random quantizer (left) and an optimal quantizer (right) of level N = 48 of
the N (0, I2) distribution.

Proposition 1.4. Let X be an H-valued L2
random variable. Let us denote by DX

N the squared quadrati

quantization error assoiated with a odebook of size N with respet to X.

DX
N : HN → R+

Γ = (γ1, . . . , γN ) 7→ E
[

min
1≤i≤N

|X − γi|2H
]
.

The distortion DX
N is | · |H-di�erentiable at N -quantizers Γ ∈ HN

with pairwise distint omponents and

suh that boundaries of Voronoi ells are PX-negligible

∇DX
N (Γ) = 2

(∫

Ci(Γ)

(γi − ξ)PX(dξ)
)
1≤i≤N

= 2
(
E

[(
X̂Γ −X

)
1{X̂Γ=γi}

])
1≤i≤N

. (5)

Hene any Voronoi quantizer assoiated with a ritial point of DX
N is a stationary quantizer.

We refer to [23℄ for a detailed proof.

De�nition 3 (Centroidal projetion). Let C = {C1, . . . , CN} be a Borel partition of H. For 1 ≤ i ≤ N , we

de�ne Gi :=

{
E[X |X ∈ Ci] if P[X ∈ Ci] 6= 0,
0 otherwise,

the entroids assoiated with X and C.

The entroidal projetion assoiated with C and X is the appliation ProjC,X : x 7→
N∑
i=1

Gi1Ci(x).

1.3 Optimal quantization and prinipal omponent analysis

For any �nite-dimensional subspae U of H , we denote by ΠU the orthogonal projetion onto U .

Proposition 1.5. Let U be a �nite-dimensional linear subspae of H. Then

EN(X)2 ≤ E

[
|X −ΠU (X)|2

]
+ EN (ΠU (X))2. (6)

Moreover, if an optimal quantizer of X of level N lies in U , we have equality in (6).

We refer to [18℄ for a detailed proof. This allows us to de�ne the quantization dimension of X of level N
by dN (X) := min

{
dim span(Γ),Γ ∈ CN (X)

}
. It follows from Proposition 1.5 that

E2N(X) = min

{
E[‖X −ΠV (X)‖2] + E2N (ΠV (X)),

V ⊂ H linear subspae

suh that dimV ≥ dN (X)

}
.
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1.3.1 Covariane operator of a Gaussian measure

De�nition 4. Let X be a entered H-valued L2
Gaussian random variable. Its ovariane operator CX :

H → H is de�ned by CXy = E[〈y,X〉X ].

1. If X is R
d
-valued, the matrix of CX in the anonial basis is the ovariane matrix of X.

2. If X = (Xt)t∈[0,T ] is a bi-measurable entered proess of ovariane funtion ΓX(s, t) := E[XsXt]
satisfying

∫
[0,T ] ΓX(s, s)ds < +∞, then X an be seen as a random variable valued in L2([0, T ], dt)

satisfying E

[
|X |2

]
<∞, and

CXy =

∫

[0,T ]

y(s)ΓX(s, ·)ds, y ∈ L2([0, T ], dt).

In [18℄, it is proved that linear subspaes U of H spanned by n-stationary quantizers of Gaussian measures

orrespond to prinipal subspaes of X . In other words, they are spanned by the eigenvetors of CX

orresponding to the largest eigenvalues.

Theorem 1.6. Let Γ be an optimal odebook for the Gaussian random variable X, U = span(Γ) and

m = dimU . Then CX(U) = U and E

[
|X −ΠU (X)|2

]
=

∑
j≥m+1

λXj , where λX1 ≥ λX2 ≥ · · · > 0 are the

ordered non-zero eigenvalues of CX (repeated as many times as their multipliity). We have

∑

j≥m+1

λXj = inf
{
E

[
|X −ΠV (X)|2

]
, V ⊂ H linear subspae, dim V = m

}
.

The minimal quadrati distortion EN(X) is given by

EN(X)2 =
∑

j≥m+1

λXj + EN




m⊗

j=1

N
(
0, λXj

)



2

for m ≥ dN (X), (7)

A proof is available in [18℄. This shows that the optimal quantization of a Gaussian proess X boils down

to a �nite-dimensional quantization problem, if the Karhunen-Loève eigensystem (eXn , λ
X
n )n∈N∗

is known.

1.4 Produt quantization

Let (en)n∈N∗
be a Hilbert basis of H , and (Nn)n≥1 an integer sequene suh that

∏
n≥1Nn < ∞ (so that

Nn = 1 for large enough n). For every n ∈ N
∗
, we onsider a odebook of size Nn, Γ

n :=
{
γn1 , . . . , γ

n
Nn

}
⊂ R.

The odebook Γ is de�ned as the set of knots in H whose oordinates in the base (en)n∈N∗
are the

Cartesian produt of the one-dimensional odebooks Γn
.

Proposition 1.7 (Case of independent marginals). With the same notation, if we assume that the marginals

of X, (〈X, e1〉, 〈X, e2〉, . . .) are independent, and that for eah k ∈ N
∗
, Y k := ProjΓk(〈X, ek〉) is a stationary

quantizer of 〈X, ek〉, then Y = ProjΓ(X) is a stationary quantizer of X.

In the ase of independent marginals, optimal produt quantization remains stationary and the simple shape

of Voronoi ells simpli�es the nearest neighbor searh.
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1.5 Numerial optimal quantization

Various algorithms have been developed to ompute optimal N -grids in the �nite-dimensional setting. A

review of these methods is available in [23℄. Let us mention Lloyd's algorithm for the quadrati ase.

Another approah is the stohasti gradient method whih is suggested by the fat that the quadrati

distortion funtion has an integral representation and is di�erentiable at any N -tuple having pairwise distint

omponents and a PX-negligible Voronoi tessellation boundary [24℄.

Equation (5) shows that any Voronoi quantizer assoiated with a ritial point of DX
N is a stationary

quantizer. In the ase of one-dimensional distributions, suh as the Gaussian distribution, the (tridiagonal)

Hessian of the distortion has a losed-form expression. Hene, a Newton-Raphson method an be easily

implemented. It is thoroughly studied in [24℄ in the Gaussian ase and remains the fastest way to ompute

L2
optimal quantizers of one-dimensional Gaussian variables.

1.6 Quantization of Gaussian proesses

1.6.1 Optimal quantization

From now on, we will assume that X is a bi-measurable Gaussian proess and has a ontinuous ovariane

funtion ΓX
and satis�es E

[
|X |2

L2
T

]
=

T∫
0

E[X2
s ]ds <∞.

We have seen in Setion 1.3 that in this setting, the L2
optimal quantization X amounts to the quan-

tization of a �nite-dimensional Gaussian vetor

m⊗
j=1

N
(
0, λXj

)
for some positive integer m, the quantization

dimension.

Several usual Gaussian proesses have expliit Karhunen-Loève expansions, suh as Brownian motion,

Brownian bridge and Ornstein-Uhlenbek proesses and bridges. (The ase of a stationary Ornstein-Uhlenbek

proess is derived for normalized parameters in the stationary ase in [12, p.195℄.) In Appendix A, we derive

the Karhunen-Loève expansion of the Ornstein-Uhlenbek proess in the general ase (for any value of the

parameters and the initial variane). The K-L expansion of the Ornstein-Uhlenbek bridge is derived in [6℄.

To the best of our knowedge, no losed-form expression is available for frational Brownian motion. In the

artile, numerial examples will be presented for the following ases.

1. Brownian motion on [0, T ]:

eWn (t) :=

√

2

T
sin

(

π(n− 1/2)
t

T

)

, λW
n :=

(
T

π(n− 1/2)

)2

, n ≥ 1. (8)

2. Brownian bridge on [0, T ]:

eBn (t) :=

√

2

T
sin

(

πn
t

T

)

, λB
n :=

(
T

πn

)2

, n ≥ 1. (9)

3. The Ornstein-Uhlenbek proess on [0, T ], starting from 0, and de�ned by the SDE

dXt = −θXtdt+ σdWt, (10)

with σ ≥ 0, θ > 0 and W a standard Brownian motion on [0, T ]:

eOU
n (t) :=

1
√

T
2
−

sin(2ωnT )
4ωn

sin(ωnt), λOU
n :=

σ2

ω2
n + θ2

, n ≥ 1, (11)

where (ωn)n≥1 are the inreasingly sorted positive solutions of θ sin(ωnT ) + ωn cos(ωnT ) = 0 (see Appendix

A).

4. The stationary Ornstein-Uhlenbek proess on [0, T ] (see Appendix A).

In Figure 2, we display a quadrati N -optimal quantizer of Brownian motion.
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Figure 2: Optimal quantization of Brownian motion on [0, 1].

1.6.2 Produt quantization

Thanks to Equation (7), the produt quantization of the �nite-dimensional distribution ξ
L∼

m⊗
j=1

N
(
0, λXj

)

yields a stationary quantizer X̂ of X of the form X̂ =
∑
n≥1

√
λXn ξ̂ne

X
n , where ξ̂n is an optimal Nn-quantizer

of ξn and

∏
n≥1

Nn ≤ N, Nn ≥ 1 (so that for large enough n, Nn = 1 and ξ̂n ≡ 0.) The paths orresponding

to a multi-index i = {i1, . . . , in, . . .} are of the form χi =
∑
n≥1

√
λXn γ

(Nn)
in

eXn .

Suh a funtional quantizer X̂ is alled a K-L produt quantizer. Furthermore, we denote by Opq(X,N)
the set of K-L produt quantizers of size at most N ofX . In the ase of produt quantization, the ounterpart

of Equation (7) is

E

[
min
i

∣∣X − χi

∣∣2
]
=

m∑

n=1

λXn E

[
min

1≤in≤Nn

∣∣∣ξn − γ(Nn)
in

∣∣∣
2
]
+

∑

n≥m+1

λXn

=

m∑

n=1

λXn

(
E

[
min

1≤in≤Nn

∣∣∣ξn − γ(Nn)
in

∣∣∣
2
]
− 1

)
+ E

[
|X |2L2

T

]
, (12)

where m is the quantization dimension.

1.6.3 Produt deomposition and blind optimization

The minimal quadrati error for a K-L produt quantizer of level N is the solution of the minimization

problem

EpqN := min
{
E(χ), χ ∈ Opq(X,N)

}
, (13)

where E(χ) is the quadrati distortion of the produt quantizer χ. Thanks to (12), this omes to

min
{ d∑

n=1

λXn ENn (N (0, 1))
2
+
∑

n≥d+1

λXn , N1 × · · · ×Nd ≤ N, d ≥ 1
}
. (14)

A solution of (13) is alled an optimal K-L produt quantizer.
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The blind optimization proedure onsists of omputing the riterion for every possible deomposition

N1 × · · · × Nd ≤ N , d ≥ 1 and N1 ≥ N2 ≥ · · · . For a given Gaussian proess X , results an be kept

o�-line for a future use. The method is more thoroughly desribed in [25℄. Optimal deompositions for a

wide range of values of N for both Brownian bridge and Brownian motion are available on the web site

www.quantize.maths-fi.om [26℄ for download. In the ase of Ornstein-Uhlenbek proesses, the optimal

deomposition depends on the di�usion parameters (σ and θ in (10)) and the maturity.

Some optimal deompositions for the stationary Ornstein-Uhlenbek proess are given in Table 1.

N Nrec Squared L2
quantization Error Produt deomposition

1 1 1.5 1
10 10 0.65318 5 × 2
100 96 0.40929 6 × 4 × 2 × 2
1000 960 0.29618 10 × 6 × 4 × 2 × 2
10000 9984 0.23150 13 × 8 × 4 × 3 × 2 × 2 × 2

Table 1: Reord of optimal produt deompositions of the stationary entered Ornstein-Uhlenbek proess

solution of the SDE dXt = −Xtdt+ dWt on [0, 3].

In the following, we will fae similar ases (other riteria than the quadrati distortion) where the blind

optimization proedure applies.

In Figure 3, we display optimal produt quantizers of Brownian motion and Brownian bridge on [0, 1]. In
Figure 4, we display optimal produt quantizers of the entered Ornstein-Uhlenbek proess starting from

X0 = 0 and a stationary Ornstein-Uhlenbek on [0, 3].
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Figure 3: Optimal produt quantization of Brownian motion (left) and Brownian bridge (right) on [0, 1].

1.6.4 Rate of deay of the quantization error

The rate of deay of the quadrati funtional quantization error of Gaussian proesses was �rst investigated

in [18℄ and more preise results were then established in [19℄. These results rely on assumptions on the

asymptoti behavior of the Karhunen-Loève eigenvalues of the onsidered proess.

Let X be a bi-measurable entered Gaussian proess on [0, T ] of ontinuous ovariane funtion ΓX
and suh

that

∫ T

0
E[X2

s ]ds <∞. Its Karhunen-Loève eigensystem is denoted by

(
eXn , λ

X
n

)
n≥1

.

Theorem 1.8 (Quadrati quantization error asymptotis). Assume that λXn ∼ φ(n) as n → ∞, where φ :

(s,∞)→ (0,∞) is a dereasing funtion suh that lim
x→∞

φ(tx)
φ(x) = t−b

for b > 1 and s > 0. Set ψ(x) := 1
xφ(x) .
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Figure 4: Optimal produt quantization of a entered Ornstein-Uhlenbek proess, starting from X0 = 0
(left) and stationary (right) solution of the SDE dXt = −Xtdt+ dWt, on [0, 3].

Then

EN (X) ∼
((

b

2

)b−1
b

b− 1

)1/2

ψ(log(N))−1/2
as N →∞.

Moreover, the optimal produt quantization dimension mX(N) veri�es mX(N) ∼ 2
b log(N) as N → ∞,

and the optimal produt quantization error EpqN (X) of level N satis�es

EpqN (X) .

((
b

2

)b−1
b

b− 1
+ C(1)

)1/2

ψ(log(N))−1/2
as N →∞,

where C(1) is a universal positive onstant.

A proof is available in [19℄. Despite of the fat that optimal produt quantization is not asymptotially

optimal, it provides a rate-optimal sequenes of quantizers. Typial rates are ∼
N→∞

log(N)−α
for α > 0. For

Brownian motion, Brownian bridge and Ornstein-Uhlenbek proesses, we have α = 1
2 .

2 A �rst attempt to quantization-based variane redution: quan-

tization as a ontrol variate

This method has been originally proposed in [25℄. Let X be an E-value L2
random variable, onsider N ∈ N

∗

and let Γ = {y1, . . . , yN} be an N -odebook. We de�ne a quantizer Y of E by Y := Proj(X) =
N∑
i=1

yi1Ci(X)

where C = {C1, . . . , CN} is a partition of E. At this stage, we do not need Proj to be a nearest neighbor

projetion onto Γ.
Let F : E → E be a Lipshitz ontinuous funtion. In order to ompute E[F (X)], we use that:

E[F (X)] = E [F (Proj(X))] + E [F (X)− F (Proj(X))]

= E [F (Proj(X))]︸ ︷︷ ︸
(a)

+
1

M

M∑

m=1

F
(
X(m)

)
− F

(
Proj

(
X(m)

))

︸ ︷︷ ︸
(b)

+RN,M ,
(15)

where X(m), 1 ≤ m ≤M areM independent opies of X , and RN,M is a remainder term de�ned by Equation

(15). Term (a) is omputed by quantization-based ubature and Term (b) is omputed by a Monte Carlo
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simulation. We have

‖RN,M‖2 =
σ(F (X)− F (Proj(X)))√

M
≤ ‖F (X)− F (Proj(X))‖2√

M
≤ [F ]

Lip

‖X − Proj(X)‖2√
M

.

Furthermore,

√
MRN,M

L→ N
(
0,Var

(
F (X)− F (Proj(X))

))
.

Consequently, in the d-dimensional ase, if F is Lipshitz ontinuous and

(
X̂N

)
N∈N

= (ProjN (X))N∈N

is a rate-optimal sequene of quantizers of X , then we have

∥∥F (X)− F
(
ProjN (X)

)∥∥
2
≤ [F ]

Lip

CX

N1/d so that

‖RN,M‖2 ≤ [F ]
Lip

CX

M1/2N1/d
.

Likewise, in the ase of Brownian motion, if

(
ŴN

)
N≥1

is a rate-optimal sequene of quadrati K-L

produt quantizers of Brownianmotion, if F is a Lipshitz ontinuous funtional, then

∥∥∥F (W )− F
(
ŴN

)∥∥∥
2
≤

[F ]
Lip

CW

log(N)1/2
so that

‖RN,M‖2 ≤ [F ]
Lip

CW

M log(N)1/2
.

The bottlenek of fast nearest neighbor searh

• The omplexity of the projetion: When implementing the quantization-based ontrol variate variable

method (15) , for every draw of the Monte Carlo simulation, one has to ompute the projetion Proj(X(m)).
As a onsequene, the e�ieny of the method is onditioned by the e�ieny of the projetion proedure.

When dealing with Voronoi quantization, this is simply the nearest neighbor projetion.

The problem of nearest neighbor projetion, also known as the post-o�e problem [15℄, has been widely

investigated in the area of omputational geometry. It has been solved near optimally in the low dimensional

ase. Algorithms di�er on their pratial e�ieny on real data sets. For large dimensions, most solutions

have a omplexity that is exponential with the dimension, or require a longer query time than the obvious

brute fore algorithm. In fat for dimension d > logN , a brute fore algorithm is usually the best hoie.

Still, even in low dimension, fast nearest neighbor searh is a ritial part of the algorithm. Let us mention

[5℄ for a fast nearest neighbor searh algorithm based on reursive vetor quantization.

The speed of the projetion an also be inreased by relaxing the hypothesis that the projetion onto the

quantizer is a nearest neighbor projetion or by hoosing simpler partitions of the state spae.

• The funtional ase: The problem of nearest neighbor searh is even less tratable in the funtional ase,

as one does not simulate the whole trajetory of the stohasti proess but only its marginals at disrete

dates, and therefore we an only make an assumption on the interpolation to ompute the nearest neighbor.

In [16℄, a funtional quantizer of Brownian motion is used as a ontrol variate variable.

3 Appliation of quantization to strati�ation

3.1 Some bakground on strati�ed sampling

The main idea of strati�ation is to loalize the Monte Carlo simulation on the elements of a measurable

partition of the state spae of an L2
random variable X : (Ω,A) → (E, E). Let (Ai)i∈I be a �nite E-

measurable partition of E. The sets Ai are alled strata. We assume that the weights pi = P (X ∈ Ai), i ∈ I
are positive. We will make two pseudo or operating assumptions on these strata:

• ∀i ∈ I, pi = P(X ∈ Ai) is known.

• ∀i ∈ I, the random variable Xi
L∼ L(X |X ∈ Ai) an be simulated at a reasonable ost (say similar to

that of X itself).

10



Tratability of simulation is a major onstraint for pratial implementation and it has a strong impat

on the design of the strata. In pratie, we an formulate the ondition by assuming that Xi = φi(U)
where U is uniformly distributed on [0, 1]ri and φi : [0, 1]

ri → R is an easily omputable funtion. (We have

ri ∈ N ∪ {+∞}, the ase ri = +∞ orresponds to the aeptane-rejetion method.)

Let F : (E, E)→ (R,B(R)) suh that E[|F (X)|] < +∞. We have

E[F (X)] =
∑

i∈I

E[1{X∈Ai}F (X)] =
∑

i∈I

piE[F (X)|X ∈ Ai] =
∑

i∈I

piE[F (Xi)].

The strati�ation onept omes into play now. LetM be the global budget alloated to the omputation

of E[F (X)] and letMi = qiM be the budget alloated to ompute E[F (Xi)] in eah stratum (with 0 ≤ qi ≤ 1,
i ∈ I and

∑
i∈I

qi = 1). This leads to de�ne the (unbiased) estimator of E[F (X)]:

F (X)
I

M :=
∑

i∈I

pi
1

Mi

Mi∑

k=1

F
(
Xk

i

)
, (16)

where (Xk
i )1≤k≤Mi is a L(X |X ∈ Ai)-distributed random sample. We have

Var
(
F (X)

I

M

)
=

1

M

∑

i∈I

p2i
qi
σ2
F,i, (17)

where σ2
F,i = Var(F (X)|X ∈ Ai) = Var(F (Xi)), i ∈ I. Optimizing the alloation of the number of draws to

the di�erent strata amounts to solving the following minimization problem:

min
(qi)∈PI

∑

i∈I

p2i
qi
σ2
F,i where PI :=

{
(qi)i∈I ∈ R

I
+

∣∣∣∣∣
∑

i∈I

qi = 1

}
. (18)

3.1.1 Natural strati�ed sampling

A natural hoie is to set

qi = pi, i ∈ I. (19)

sine the weights pi are known. Furthermore, this always redues the variane.

∑

i∈I

p2i
qi
σ2
F,i =

∑

i∈I

piσ
2
F,i =

∑

i∈I

E

[(
F (X)− E[F (X)|X ∈ Ai]

)2
1Ai(X)

]

= ‖F (X)− E[F (X)|σ({X ∈ Ai}, i ∈ I)]‖22
≤ ‖F (X)− E[F (X)]‖22 = Var(F (X)).

3.1.2 Optimal strati�ed sampling

The optimal hoie is the solution to the onstrained minimization problem (18). Shwarz's inequality yields

∑

i∈I

piσF,i =
∑

i∈I

piσF,i√
qi

√
qi ≤

(∑

i∈I

p2iσ
2
F,i

qi

)1/2(∑

i∈I

qi

)1/2
.

The solution orresponds to the equality ase in Shwarz's inequality, that is

q∗i =
piσF,i∑

j∈I

pjσF,j
, i ∈ I (20)

11



with a resulting minimal variane of

(∑
i∈I

piσF,i

)2
. At this stage, the problem is that we do not a priori

know the loal inertia σ2
F,i. Still, using the fat that Lp

norms are dereasing with p, we see that

σF,i ≥ E

[
|F (X)− E [F (X)|{X ∈ Ai}]|

∣∣∣{X ∈ Ai}
]
,

so that (∑

i∈I

piσF,i

)2

≥
∥∥∥F (X)− E [F (X)|σ({X ∈ Ai}, i ∈ I)]

∥∥∥
2

1
.

In [30℄, Étoré and Jourdain proposed an algorithm whih adaptively modi�es the proportion of further

drawings in eah stratum and whih onverges to the optimal alloation.

In Setion 3.2, we show that the problem of designing good strata, in term of variane redution is linked

with optimal quantization. Besides, with quantization-based strati�ed sampling, the weights pi are already
known.

3.2 Quantization and strati�ed sampling

The main drawbak of using quantization as a ontrol variate is the repeated omputations of the projetions

onto the quantizer. (Nearest neighbor searhes in the ase of a Voronoi quantizer.) In the ase of strati�ed

sampling, one does not have to use a projetion proedure. Instead, we must fous on the ost of the

simulation of onditional distributions L(X |X ∈ Ai), i ∈ I.
Proposition 3.1 brings together previous results and highlights the relationships with quantization. It

shows that strati�ation has uniform e�ieny among the lass of Lipshitz ontinuous funtionals.

Proposition 3.1 (Universal strati�ation). Let A = (Ai)i∈I be a partition of E and let ProjA,X denote the

entroidal projetion assoiated with X and A, de�ned in De�nition 3.

1. Considering the loal inertia of X in Ai, σ
2
i = E

[
|X − E[X |X ∈ Ai]|2

∣∣∣X ∈ Ai

]
, we have for every

Lipshitz ontinuous funtion F : E → E, σF,i ≤ [F ]
Lip

σi where [F ]
Lip

= sup
x 6=y

F (x)−F (y)
|x−y| , so that

sup
[F ]

Lip

≤1

σF,i = σi, (21)

2. In the ase of natural strati�ed sampling (see Setion 3.1.1),

sup
[F ]

Lip

≤1

(∑

i∈I

piσ
2
F,i

)
=
∑

i∈I

piσ
2
i =

∥∥∥X − E[X |σ({X ∈ Ai}, i ∈ I)]
∥∥∥
2

2
=
∥∥∥X − ProjA,X(X)

∥∥∥
2

2
. (22)

3. In the ase of the optimal hoie (see Setion 3.1.2),

sup
[F ]

Lip

≤1

(∑

i∈I

piσF,i

)2
=
(∑

i∈I

piσi

)2
, (23)

and (∑

i∈I

piσi

)2
≥
∥∥∥X − E[X |σ({X ∈ Ai}, i ∈ I)]

∥∥∥
2

1
=
∥∥∥X − ProjA,X(X)

∥∥∥
2

1
.

4. In the ase of real-valued Lipshitz ontinuous funtions F : E → R, Equalities (21), (22) and (23)

hold as inequalities.
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Proof: We have

σ2
F,i = Var (F (X)|X ∈ Ai) = E

[
|F (X)− E[F (X)|X ∈ Ai]|2

∣∣∣X ∈ Ai

]

≤ E

[
|F (X)− F (E[X |X ∈ Ai])|2

∣∣∣X ∈ Ai

]
.

Now using that F is Lipshitz ontinuous, we get

σ2
F,i ≤ [F ]2

Lip

1

pi
E

[
|X − E[X |X ∈ Ai]|2 1{X∈Ai}

]
= [F 2]

Lip

σ2
i .

Items 2 and 3 easily follow from Item 1. Equality follows by onsidering F = IdE . �

3.2.1 Universal strati�ed sampling

Proposition 3.1 suggests, in the ase of Lipshitz ontinuous funtionals, to set

qi =
piσi∑

j∈I

pjσj
, j ∈ I,

so that we have uniform e�ieny among the lass of Lipshitz ontinuous funtionals. This alloation sheme

will be further referred to as the �universal strati�ation� weights. It also shows that, in the Lipshitz

ontinuous ase, it is always bene�ial to redue the quadrati distortion assoiated with the entroidal

projetion ProjA,X .

Still, this minimization should not be done at the expense of the e�ieny of the simulation of the orre-

sponding onditional distributions. We should reah for a balane between the e�ieny of the simulation in

the strata and the quadrati quantization error ontrolling the variane redution. For example, in Setion

4, in the funtional ase, we will use optimal produt quantizers, whih are rate optimal (and numerially

near optimal) and allow for a muh more e�ient simulation than real optimal funtional quantization.

Remark. We should also mention the adaptive strata design proposed in [29, 14℄.

3.3 Simulation in hyper-retangular strata in the independent Gaussian ase

Consider X
L∼ N (0, Id), d ≥ 1 and (e1, . . . , ed) an orthonormal basis of R

d
. Let N1, . . . , Nd ≥ 1 be the

number of strata in eah diretion and for 1 ≤ i ≤ d, −∞ = γi0 ≤ γi1 ≤ · · · ≤ γiNi
= +∞. We de�ne

Ai :=

d⋂

l=1

{
x ∈ R

d
suh that 〈el, x〉 ∈ [xlil−1, x

l
il ]
}
, i ∈

d∏

l=1

{1, . . . , Nl}.

Then for every i ∈
d∏

l=1

{1, . . . , Nl}, L
(
X
∣∣X ∈ Ai

)
=
⊗d

l=1 L
(
Z
∣∣Z ∈

[
γlil−1, γ

l
il

])
, where Z

L∼ N (0, 1), pi =

P(Ai) =
d∏

l=1

(
N (γlil )−N (γlil−1)

)
and for −∞ ≤ a ≤ b ≤ ∞,

L (Z|Z ∈ [a, b]) = N−1 ((N (b)−N (a))U +N (a)) , U
L∼ U([0, 1]). (24)

4 Funtional strati�ation of Gaussian proesses

In the funtional ase, the state spae of the random values are funtional spaes. What is usually done is

to simulate a sheme to approximate marginals of the underlying proess.
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In this setion, we assume that X is a entered R-valued bi-measurable Gaussian proess on [0, T ] that

satis�es

∫ T

0
E[X2

t ]dt < ∞. We are interested by the value of E[F (Xt0 , Xt1 , . . . , Xtn)] for some real funtion

F , where 0 = t0 ≤ t1 ≤ · · · ≤ tn = T are n+ 1 dates of interest for the underlying proess.

(For example, X an be a standard Brownian motion on [0, T ], and one omputes the risk-neutral

expetation of a path-dependent payo� of a di�usion based on X .)

The results of this setion an be easily generalized to the multi-dimensional ase, like multifator di�u-

sions. Still we restrit ourselves to the one-dimensional setting for larity.

Let us assume that χ ∈ Opq(X,N) is a K-L optimal produt quantizer of X . The odebook assoiated

with this produt quantizer is the set of the paths of the form

χi =
∑

n≥1

√
λXn γ

(Nn)
in

eXn , i = {i1, . . . , in, . . .},

with the same notation as in Setion 1.6.2. We now need to be able to simulate the onditional distribution

L(X |X ∈ Ai)

where Ai is the ell assoiated with χi in the odebook. To simulate the onditional distribution L(X |X ∈
Ai), one will :

• First, simulate the �rst K-L oordinates of X , using (24).

• Then simulate the onditional distribution of the marginals of the Gaussian proess given its �rst K-L

oordinates.

Remark. We have hosen to use K-L optimal produt quantizers instead of optimal quantizers beause in

this ase, the Voronoi ells in this are hyper-retangles, whih allows us to simulate the �rst K-L oordinates

more easily than in the general ase. Moreover, the rate of deay of the quantization errors is rate-optimal

under some onditions on the Karhunen-Loève eigenvalues whih are veri�ed in the onsidered examples [18℄.

4.1 Simulation of marginals of the Gaussian proess, given its d �rst K-L oor-

dinates

In this setting, the aim is to simulate the onditional distribution

L
(
Xt0 , . . . , Xtn

∣∣∣
∫ T

0

Xse
X
1 (s)ds,

∫ T

0

Xse
X
2 (s)ds, . . . ,

∫ T

0

Xse
X
d (s)ds

)
(25)

where (Xt)t∈[0,T ] is an L2
R-valued Gaussian proess, and (eXk , λ

X
k )k∈N∗

is the Karhunen-Loève system

assoiated with the proessX . Hene

(
Xt0 , . . . , Xtn ,

∫ T

0
Xse

X
1 (s)ds, . . . ,

∫ T

0
Xse

X
d (s)ds

)
is a Gaussian vetor.

As a onsequene, if we denote Y :=




∫ T

0 Xse
X
1 (s)ds
.

.

.∫ T

0 Xse
X
d (s)ds


 and V :=




Xt0
.

.

.

Xtn


, the onditional distribution

(25) is given by the transition kernel ν(y,A) = N
(
AfV |Y (y), cov(V − E[V |Y ])

)
, where AfV |Y : Rd → R

n
is

an a�ne funtion orresponding to the linear regression of V on Y , AfV |Y (Y ) := E[V |Y ].

• We have AfV |Y (Y ) = E[V ] + RV |Y Y where RV |Y = cov(V, Y ) cov(Y )−1
. Using that cov(Y ) =(

λXi δij

)
1≤i,j≤d

and cov(V, Y ) = (λXk e
X
k (ti))0≤i≤n,1≤k≤d, we get

RV |Y =
(
eXj (ti)

)
0≤i≤n,1≤j≤d

. (26)
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• The ovariane matrix is

K := cov (V − E[V |Y ]) = E
[(
V −RV |Y Y

) (
V −RV |Y Y

)]

= cov(V )− 2 cov
(
V,RV |Y Y

)
+ cov

(
RV |Y Y

)
= cov(V )− cov

(
RV |Y Y

)

=

(
cov(Vl, Vk)−

d∑

i=1

λie
X
i (tl)e

X
i (tk)

)

0≤k,l≤n

.

The easiest way to simulate aording to this probability distribution would be to use the Cholesky

fatorization of K. However, when using this method, the simulation of a simple path involves the quadrati

omplexity of an n× n matrix multipliation, whih is not satisfatory for our purpose.

4.2 Faster simulation of onditional paths - Bayesian simulation

As pointed out earlier, the naive simulation method for L(V |Y ) requires for eah path a multipliation by a

Cholesky transform of K whose ost is O(n2).

• Yet, the quantization dimension d of the proess is lose to log(N) where N is the number of strata,

and n, the number of time steps, is usually very large ompared to d.

• The idea here is that the onditional distribution L(V |Y ) is determined through the Bayes lemma, by

the onditional distribution L(Y |V ) and the two marginal distributions L(V ) and L(Y ).

One knows that V = E[V |Y ]
⊥⊥
+ Z where Z

L∼ N (0, cov(V − E[V |Y ])) is independent of Y . Hene one is
able to simulate aording to L(V |Y = y) if one an simulate the distribution of Z, writing L(V |Y = y) =
E[V |Y = y] + L(Z). This deomposition orresponds to the splitting of the Karhunen-Loève expansion:




V0
.

.

.

Vn


 =

d∑

k=1

√
λXk ξk︸ ︷︷ ︸
=Yk




eXk (t0)
.

.

.

eXk (tn)




︸ ︷︷ ︸
=E[V |Y ]

⊥⊥
+

∑

l≥d+1

√
λXk ξk




eXk (t0)
.

.

.

eXk (tn)




︸ ︷︷ ︸
=Z

.

To simulate Z, one simulates the distribution of V and the onditional distribution L(Z|V ).

We have L(Z|V )
L∼ δV − L(E[V |Y ]|V )

L∼ δV −AfV |Y L(Y |V )
L∼ δV −AfV |YN (E[Y |V ], cov(Y − E[Y |V ])).

If AfY |V is the a�ne funtion orresponding to the regression of Y on V and RY |V its linear part,

cov(Y − E[Y |V ]) = cov(Y ) + cov(E[Y |V ])− 2 cov(Y,E[Y |V ]) = cov(Y )−RY |V cov(V )tRY |V .

This yields Z = V −AfV |Y (G) where G
L∼ N (AfY |V (V ), cov(Y )− RY |V cov(V )tRY |V ). Finally, we an use

the following method to simulate the onditional distribution of V Y .

• Simulate V . O(n).

• Simulate G
L∼ N

(
AfY |V (V ), cov(Y )−RY |V cov(V )tRY |V

)
O(d× d).

• Compute Z = V −AfV |Y (G). O(d × n).

The random variable T := AfV |Y (y) + Z satis�es T
L∼ L(V |Y = y).
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Let us remind that AfV |Y is trivially de�ned in Equation (26), beause oordinates of Y are independent.

Other matries implied in this algorithm are omputed prior to any Monte Carlo simulation. In general, RY |V

an simply be omputed by performing a numerial least-square regression. Moreover in the speial ases of

Brownian motion, Bronian bridge and Ornstein-Uhlenbek proesses, there are losed-form expressions for

the RY |V , whih we present in Appendix B.

In the ase of Brownian motion, for a uniform time disretization mesh tj =
jT
n = jh, 0 ≤ j ≤ n, this yields

RY |V = (αij)1≤i≤d,0≤j≤n, with

• αij = λWi
2eWi (tj)−eWi (tj−1)−eWi (tj+1)

h for j /∈ {0, n},

• αi0 = λWi

( (
eWi
)′
(t0)− eWi (t1)−eWi (t0)

h

)
,

• αin = λWi

(
eWi (tn)−eWi (tn−1)

h −
(
eWi
)′
(tn)

)
.

We now have a very fast and easy way to simulate the onditional distribution (25) at our disposal.

In Figures 5 and 6, we plot a few paths of the onditional distribution of various Gaussian proesses given

that they belong to a given L2
Voronoi ell. The appearane of the drawing suggests to onsider the method

as a �guided Monte Carlo simulation�.
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Figure 5: A few paths of the onditional distribution of Brownian motion, given that its path belong to the

L2
Voronoi ell of the highlighted urve in the quantizer.

4.3 Blind optimization proedures for the universal strata design

We have seen in Setion 3.2 that the quantity d(χ) =
( ∑

χi∈Γ

piσi

)2
is an upper bound of the variane of the

estimator, given in Equation (16) in the ase where the funtional is 1-Lipshitz ontinuous. Hene one may

want to minimize this riterion instead of the L2
quantization error. This yields the minimization problem

Dpq
N := min

{
d(χ), χ ∈ Opq(X,N)

}
(27)
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quantizer.

instead of the minimization problem (13).

The same kind of blind optimization proedure as in Setion 1.6.3 an be performed. Some values of the

optimal deomposition for Brownian motion are given in Table 2.

N Nrec d(χ) Produt deomposition

1 1 0.5 1
10 10 9.75689 · 10−2 5 × 2
100 96 5.10548 · 10−2 12 × 4 × 2
1000 966 3.51289 · 10−2 23 × 7 × 3 × 2
10000 9984 2.63721 · 10−2 26 × 8 × 4 × 3 × 2 × 2

Table 2: Reord of optimal produt deomposition of Brownian motion with respet to the riterion (27).

Optimal produt deompositions for both Brownian bridge and Brownian motion and for a wide range of

values of N are available on the web site www.quantize.maths-fi.om [26℄ for download. When omparing

deompositions for levels lesser 11000, we notie that in the ase of Brownian motion, the optimal deompo-

sitions for both riteria are �almost� always the same. The only values where deompositions di�er are the

ranges 270− 271 and 3328− 3359, and even then, the two riteria result in similar deompositions. Hene

in pratie, we an use the same database for both riteria. Nonetheless, in the ase of Brownian bridge and

Ornstein-Uhlenbek proesses, the optimal deompositions resulting from the two riteria di�er more often.

4.4 Funtional strati�ation of solutions of stohasti di�erential equations

We onsider the SDE

dFt = b(t, Ft)dt+ σ(t, Ft)dXt, t ∈ [0, T ], F0 = f0 (28)

where X is a entered ontinuous Gaussian semimartingale starting from 0 and where b and σ are Borel

funtions, Lipshitz ontinuous in x uniformly in t ∈ [0, T ] suh that |b(·, 0)|+ |σ(·, 0)| is bounded over [0, T ].
In this situation, (28) admits a unique strong solution X and sup

t∈[0,T ]

|Xt| has r-moments for every r ∈ (0,∞).

Remark. In this ase, thanks to Fernique's theorem, the ontinuity assumption on the Gaussian proess

ensures that

∫ T

0
E[X2

s ]ds <∞ and the ontinuity of the ovariane funtion, (see [13, VIII.3℄).

The most ommon approah to perform a Monte Carlo simulation with the solution of suh a stohasti

di�erential equation, is to use a disretization sheme like the Euler sheme [9℄. In this setting, we propose
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to simply replae Gaussian proess X by a strati�ed version of X in the Euler sheme. This approah is

justi�ed in many ways:

1. In [7℄, using �ltration enlargement tehniques, it is proved that under some additional hypothesis on

the Gaussian semimartingale X , its onditional distribution in a strata is still a semimartingale with

respet to its own �ltration. This additional hypothesis is satis�ed by Brownian motion, Brownian

bridge and Ornstein-Uhlenbek proesses. Therefore, plugging the strati�ed Euler sheme into the

SDE amounts to using the Euler sheme of these onditional stohasti di�erential equations.

2. In the one-dimensional setting, if we make the additional hypothesis that σ ∈ C1([0, T ] × R,R) is

positive and bounded, as soon as the drift of the Lamperti transform of the SDE (28) is Lipshitz

ontinuous, the unique strong solution of (28), seen as a funtional of the underlying Gaussian proess

X is ‖ · ‖p-Lipshitz ontinuous [20℄. Hene we an apply the results of Setion 3.2 on universal

strati�ation for Lipshitz ontinuous funtionals.

3. The funtion (Xt0 , . . . , Xtn) 7→
(
Xt1 −Xt0 , . . . , Xtn −Xtn−1

)
that maps the marginals of Brownian

motion to the orresponding inrements used in the Euler sheme, is a linear map from R
n+1

to R
n

and thus Lipshitz ontinuous as well.

5 Appliation to option priing

The speial ase of Brownian motion allows us to use funtional strati�ation as a generi variane redution

method for the ase of funtionals of Brownian di�usions, even in the multidimensional ase, regardless of

how the Brownian paths are orrelated or used afterwards, to drive the di�usion of an underlying stok,

a stohasti volatility proess or a disount fator. As it only impats how the Monte Carlo simulation is

input with Brownian paths, our approah is easier to implement in a pratial setting than adaptive variane

redution methods, whih generally require a ontrol loop.

In this setion, we study the performane of our method in simple one-dimensional ases. We begin with

the ase of a ontinuous-time Up-In Call option in the Blak and Sholes model, for whih a losed-form

expression is known, and used as a Benhmark.

5.1 Benhmark with an Up-In Call in the Blak and Sholes model

We evaluate our method in the ase of a path dependent option where a referene value an easily be

omputed: an Up-In Call barrier option in the Blak and Sholes model. For the sake of simpliity, we

assume that there is no drift (no interest rate and no dividend). There is a losed-form expression for the

ontinuous barrier option prie, but we must resort to a numerial approximation [3℄ (yet very aurate) on

that losed-form expression to get the prie in the ase of disrete dates for the barrier. The total size of the

Monte Carlo sample is 100000 in every ase.

We prie the Up-In Call option with di�erent values of the initial spot S, the strike K, the barrier H ,

the volatility σ, the maturity T , and the number of �xing dates for the disrete barrier n. In every ase, a

95% on�dene interval is given. So is the variane of the estimator.

The numerial results are reported in Table 3 when using the method with 20 stratas and Table 4 when

using the method with 100 stratas. In this tables, the �rst olumn orrespond to Broadie and Glasserman's

losed-form expression proxy. The seond one orresponds to a simple Monte Carlo estimator. The last

three olumns orrespond to strati�ed sampling estimators with di�erent simulation alloation strategies.

The �natural weights� olumn stands for the alloation budget of Equation (19). The �Lip.-optimal

weights� olumn stand for the �universal strati�ation� budget alloation proposed in Setion 3.2. In these

two ases, we have an expliit alloation rule whih does not depend on the payo� funtion. The last olumn,

�optimal weights� orresponds to an estimation of the optimal budget alloation given in Equation (20).
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Parameter Broadie & Simple Strat. estimator Strat. estimator Strat. estimator

Values Glasserman's estimator natural weights Lip.-optimal weights optimal weights

proxy

S = 100, K = 100 14.0379 13.9281 13.9283 13.9364
H = 125, σ = 0.3, 13.9597 [13.8705, 14.2053] [13.8491, 14.0071] [13.8519, 14.0047] [13.8827, 13.9901]
T = 1.5, n = 365 Var = 729.2518 Var = 162.4650 Var = 151.9481 Var = 75.1319
S = 100, K = 100 1.4206 1.3659 1.3510 1.3602
H = 200, σ = 0.3, 1.3665 [1.3442, 1.4969] [1.3106, 1.4211] [1.3039, 1.3981] [1.3472, 1.3732]
T = 1, n = 365 Var = 151.6366 Var = 79.5118 Var = 57.7425 Var = 4.4053

Table 3: Numerial results for the Up-In Call option, with 20 stratas.

Parameter Broadie & Simple Strat. estimator Strat. estimator Strat. estimator

Values Glasserman's estimator natural weights Lip.-optimal weights optimal weights

proxy

S = 100, K = 100 14.0379 13.9382 13.9511 13.9483
H = 125, σ = 0.3, 13.9597 [13.8705, 14.2053] [13.8720, 14.0043] [13.8874, 14.0150] [13.9047, 13.9919]
T = 1.5, n = 365 Var = 729.2518 Var = 114.0634 Var = 105.8760 Var = 49.5071
S = 100, K = 100 1.4206 1.3296 1.3493 1.3611
H = 200, σ = 0.3, 1.3665 [1.3442, 1.4969] [1.2825, 1.3768] [1.3093, 1.3893] [1.3508, 1.3715]
T = 1, n = 365 Var = 151.6366 Var = 57.8899 Var = 41.6666 Var = 2.8099

Table 4: Numerial results for the Up-In Call option, with 100 stratas.

5.2 Test with an Auto-Call in the CEV model

We assume that the stok follows a CEV model with no drift dSt = σS
β
2
t dWt, 0 < β < 2. We used the

Euler sheme on ln(St), whih satis�es the SDE d ln(St) = −σ2

2 S
β−2
t dt+ σS

β
2 −1
t dWt.

Desription of the Auto-Call payo�:

Let St be the stok prie and 0 = t0 < t1 < · · · < tn = T be the observation dates. K and H are the

�strike� and the �barrier� values. P denotes the �nominal�, and C a zero-oupon bond of maturity T .
At the �rst date t1 of the shedule, if St1 > K, the holder of the option reeives (1+C)P and the ontrat

expires. If St1 ≤ K, he waits until the seond date of the shedule. If St2 > K, the holder gets (1 + C)P
and the ontrat expires. And so on... If St does not reah K on [0, T ), the ontrat is exeried as follows:

if ST > K, the holder gets (1 + C)P . If H < ST ≤ K, the holder gets P and if ST ≤ H , he gets P ST

K .

The numerial results are reported in Table 5 when implementing the strati�ation method with 20 and

50 stratas. The parameters of the model are β = 1.5, S0 = 100, σ = 0.3. For the payo�, K = 110, H = 80,
P = 100, C = 0.07. The onsidered observation dates are {1, 2, 3}. The number of time steps in the Euler

sheme is 300 and the total size of the Monte Carlo sample is 100000 in every ase.

Number of strata Simple Strat. estimator Strat. estimator Strat. estimator

estimator natural weights Lip.-optimal weights optimal weights

99.0598 99.0839 99.0886 99.0477
20 [98.9887, 99.1310] [99.0438, 99.1239] [99.0488, 99.1284] [99.0184, 99.0769]

Var = 131.8089 Var = 41.8067 Var = 41.2888 Var = 22.2549
99.0598 99.0507 99.0790 99.0444

50 [98.9887, 99.1310] [99.0129, 99.0886] [99.0414, 99.1166] [99.0179, 99.0709]
Var = 131.8089 Var = 37.3150 Var = 36.8408 Var = 18.2954

Table 5: Numerial results for the Auto-Call option in the CEV model, with 20 and 50 stratas.

5.3 Test with an Asian straddle in the one-fator Shwartz model

Here, we stand in the ase of a stok whih follows the following SDE:

dSt = θ(α − lnSt)Stdt+ σStdWt, (29)
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under the risk-neutral probability. The stohasti proess X = ln(S) is an Ornstein-Uhlenbek proess:

dXt = θ(µ−Xt)dt+ σdWt with µ = α− σ2

2θ
. (30)

This model was proposed by Shwartz in [27℄. Suh exponentials of Ornstein-Uhlenbek proesses are

ommonly met in ommodity derivatives. One partiularity in these markets is that the spot is generally not

diretly traded. Therefore, the underlyings of derivatives are generaly futures. Still, we use this one-fator

�toy� model as a simple ase study for our variane redution method.

The onsidered payo� is an Asian straddle option on a disrete shedule of observation dates t0 < · · · <
tn = T . K is the �strike� of the option whose payo� is

∣∣∣∣ 1
n+1

n∑
k=0

Stk −K
∣∣∣∣.

We perform a funtional strati�ed sampling of the Ornstein-Uhlenbek proess. Optimal produt deom-

positions for the riterion (27) are used and available in Table 6 where the numerial results are reported.

The parameters are S0 = 100, θ = 0.3, α = ln(110), σ = 0.3 and K = 100. The total size of the Monte

Carlo sample is 100000 in every ase. The observation dates are

(
iTn
)
i={0,...,n}

with T = 3 and n = 36.

Number of strata Simple Strat. estimator Strat. estimator Strat. estimator

and produt deomposition estimator natural weights Lip.-optimal weights optimal weights

17.5393 17.6140 17.6118 17.6240
20 [17.4504, 17.6282] [17.5871, 17.6408] [17.5856, 17.6378] [17.6006, 17.6477]

20 = 10 × 2 Var = 205.9375 Var = 18.8041 Var = 17.5502 Var = 14.6363
17.5393 17.6101 17.6122 17.6147

100 [17.4504, 17.6282] [17.5850, 17.6351] [17.5884, 17.6360] [17.5932, 17.6362]
100 = 10 × 5 × 2 Var = 205.9375 Var = 16.2945 Var = 14.7316 Var = 12.0112

Table 6: Numerial results for the Asian straddle option in Shwartz's model, with 20 and 100 stratas.

To perform this omputation, one needs to use a non-entered Ornstein-Uhlenbek quantizer. Building

suh a quantizer is a straightforward extension of the entered ase. As showed in Setion A, if X is an

Ornstein-Uhlenbek proess on [0, T ] following the dynami dXt = θ(µ − Xt)dt + σdWt, X0
L∼ N (m0, σ

2
0),

with nonzero values of µ and m0, we have

Xt = m0e
−θt + µ(1− e−θt)︸ ︷︷ ︸

(1)=non-stohasti path

+

(
entered Ornstein-Uhlenbek proess

orresponding to m0 = µ = 0

)
. (31)

In Figure 7, we display the funtional produt quantizer of a non-entered Ornstein-Uhlenbek proess.

5.4 Comments on the numerial results

�Lipshitz-optimal� strata and weights are not more di�ult to ompute than the �natural� sheme (19)

sine all the involved parameters are known. This strati�ed sampling method does not depend on the payo�

funtion but only on the distribution of the underlying asset whih means that it an be plugged upstream in

the Monte Carlo simulator. In terms of variane redution, universal strati�ation is all the more preforming

as the variane of the plain estimator is high, most likely beause more strata are �ativated�. When the

payo� funtion is symmetri, like with the Asian straddle it ahieves up to 90% of the variane redution

ahieved by a payo�-dependent dediated method like the one devised in [30℄.

A The Karhunen-Loève expansion of Ornstein-Uhlenbek proesses

In this setion, we derive the Karhunen-Loève expansion of the Ornstein-Uhlenbek proess. Proposition

A.3 brings the results together. Setion A.3 presents the numerial method for omputing this expansion.
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Figure 7: Funtional 10×2-produt quantizer of an Ornstein-Uhlenbek proess starting from X0 = 6 de�ned
by the di�usion dXt = θ(µ−Xt)dt+ σdWt with µ = 5, σ = 0.3 and θ = 0.8 on [0, 3].

A.1 The Ornstein-Uhlenbek proess

The Ornstein-Uhlenbek proess is de�ned by the SDE

dXt = θ(µ−Xt)dt+ σdWt, with σ ≥ 0 and θ > 0, (32)

whih gives

Xt = X0e
−θt + µ(1− e−θt) +

∫ t

0

σeθ(s−t)dWs. (33)

We assume that X0 is Gaussian (X0
L∼ N (m0, σ

2
0)) and independent from W . We have E[Xt] = m0e

−θt +

µ(1 − e−θt) and cov(Xs, Xt) =
σ2

2θ e
−θ(s+t)

(
e2θmin(s,t) − 1

)
+ σ2

0e
−θ(s+t). Moreover lim

t→∞
Var(Xt) =

σ2

2θ (the

long-term variane). If the initial variane σ2
0 is equal to long-term variane

σ2

2θ , X is stationary and the

ovariane funtion is given by cov(Xs, Xt) =
σ2

2θ e
−θ|s−t|

. The total variane of the proess on [0, T ] is

‖X‖22 =
∫ T

0

Var(Xs)ds =
σ2T

2θ
+

(
σ2
0 −

σ2

2θ

)(
1

2θ
− e−2θT

2θ

)
.

A.2 The Ornstein-Uhlenbek ovariane operator

The Ornstein-Uhlenbek ovariane operator is given by

TOUf(t) =

∫ T

0

σ2

2θ
e−θ(s+t)

(
e2θmin(s,t) − 1

)
f(s)ds+

∫ T

0

σ2
0e

−θ(s+t)f(s)ds. (34)

Computing the Karhunen-Loève expansion of the Ornstein-Uhlenbek proess

TOU
is a ompat Hermitian positive operator on the separable Hilbert spae L2([0, T ]). Hene there exists

an orthonormal basis onsisting of eigenvetors of TOU
and eigenvalues are real and nonnegative. Moreover∥∥TOU

∥∥2 ≤ σ2T
2θ + σ2

4θ2

(
e−2θT − 1

)
. We have

TOUf(t) =

∫ t

0

σ2

2θ
eθ(s−t)f(s)ds+

∫ T

t

σ2

2θ
eθ(t−s)f(s)ds+

∫ T

0

(

σ2
0 −

σ2

2θ

)

e−θ(s+t)f(s)ds.
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Proposition A.1. If f ∈ C([0, 1]), and if g = TOUf , then

g′′ − θ2g = −σ2f, (35)

with

σ2
0g

′(0) =
(
σ2 − θσ2

0

)
g(0) and g′(T ) = −θg(T ). (36)

Proof:

g(t) =

∫ t

0

σ2

2θ
eθ(s−t)f(s)ds+

∫ T

t

σ2

2θ
eθ(t−s)f(s)ds+

∫ T

0

(

σ2
0 −

σ2

2θ

)

e−θ(s+t)f(s)ds.

g′(t) = −
σ2

2

∫ t

0

eθ(s−t)f(s)ds+
σ2

2

∫ T

t

eθ(t−s)f(s)ds−

(

θσ2
0 −

σ2

2

)∫ T

0

e−θ(s+t)f(s)ds

g′′(t) =
σ2θ

2

(∫ t

0

f(s)eθ(s−t)ds+

∫ T

t

f(s)eθ(t−s)ds

)

+ θ

∫ T

0

(

θσ2
0 −

σ2

2

)

e−θ(s+t)f(s)ds− σ2f(t).

we get g′′(t) = θ2g(t)− σ2f(t). Moreover, Equation (36) omes when identifying expressions with t = 0 and t = T .

�

Proposition A.2. Conversely, if g ∈ C2([0, T ]) and if funtions f and g satisfy Equations (35) and (36)

then g = TOUf .

Proof: Computing TOUg′′ yields:

TOUg′′(t) =

∫ t

0

σ2

2θ
eθ(s−t)g′′(s)ds+

∫ T

t

σ2

2θ
eθ(t−s)g′′(s)ds+

∫ T

0

(
σ2
0 −

σ2

2θ

)
e−θ(s+t)g′′(s)ds.

An integration by parts yields

TOUg′′ = −σ2
0g

′(0)e−θt − σ2g(t) + σ2

2 g(0)e
−θt −

(
θσ2

0 − σ2

2

)
g(0)e−θt + θ2TOUg(t)

= −σ2g(t) + θ2TOUg(t) thanks to (36).

�
Now, by neessary onditions, TOUf = λf ⇔ σ2g = λ(θ2g − g′′). We obtain

λg′′ + (σ2 − λθ2)g = 0. (37)

Hene the solution of the ordinary di�erential equation (37) on [0, T ] has the form g(t) = A cos(ωt)+B sin(ωt),

with ω =
√

σ2−λθ2

λ ⇔ λ = σ2

ω2+θ2 . Equation (36) yields ωBσ2
0 = (σ2 − θσ2

0)A. Hene, we have g(t) =

K
(
ωσ2

0 cos(ωt) + (σ2 − θσ2
0) sin(ωt)

)
, so that Equality (36) yields

ωσ2 cos(ωT ) +
(
−ω2σ2

0 + θσ2 − θ2σ2
0

)
sin(ωT ) = 0. (38)

Conversely, the same alulation shows that λn ∈
]
0,
∥∥TOU

∥∥
2

]
is an eigenvalue of TOU

if and only if Equality

(38) holds.

Proposition A.3. Finally, if (ωn)n≥1 is the inreasingly sorted sequene of the positive solutions of (38),

the Karhunen-Loève eigensystem

(
eOU
n , λOU

n

)
n≥1

of the Ornstein-Uhlenbek proess is

• λOU
n = σ2

ω2
n+θ2 , and

• eOU
n (t) = Kn

(
ωnσ

2
0 cos(ωnt) + (σ2 − θσ2

0) sin(ωnt)
)
for n ≥ 1, where Kn is the normalization onstant.

If (σ, σ0) 6= (0, 0), Kn is given by

1/K2
n =

1

2ωn
σ2
0(σ

2 − θσ2
0) (1− cos(2ωnT )) +

1

2
σ4
0ω

2
n

(
T +

1

2ωn
sin(2ωnT )

)

+
1

2
(σ2 − θσ2

0)
2
(
T − 1

2ωn
sin(2ωnT )

)
. (39)
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Case of a deterministi starting point: In this ase (σ0 = 0), we have

eOU
n (t) =

1√
T
2 −

sin(2ωnT )
4ωn

sin(ωnt).

Stationary ase: In the stationary ase (σ2
0 = σ2

2θ ), we have e
OU
n (t) = Cn

(
ωn cos(ωnt) + θ sin(ωnt)

)
, where

Cn is the normalization onstant. Cn is given by

1/C2
n =

θ

2

(
1− cos(2ωnT )

)
+
ω2
n

2

(
T +

sin(2ωnT )

2ωn

)
+
θ2

2

(
T − sin(2ωnT )

2ωn

)
.

A.3 Numerial omputation of the Karhunen-Loève expansion of the Ornstein-

Uhlenbek proess

This setion fouses on the omputation of the positive solutions to (38).

A.3.1 Deterministi starting point

In this ase (σ0 = 0), we an hek that elements of

{
π
2T + k π

T , k ∈ N
}
are not solutions of Equation (38).

As a onsequene, the equation omes to

θ tan(ωT ) = −ω. (40)

The ase where θ = 0 omes to the ase of Brownian motion, hene we assume that θ 6= 0. Solutions of

this equation are illustrated in Figure 8. We an show that there is a unique solution ωn in eah interval(
nπ
T − π

2T ,
nπ
T

)
, for n ∈ {1, 2, . . .} and that lim

n→∞
ωn −

(
nπ
T − π

2T

)
= 0.
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Figure 8: (Deterministi starting point). Solutions of (40). (Ornstein-Uhlenbek proess starting from

a �xed point X0, σ0 = 0.) Parameter values are T = 3, σ = 1 and θ = 3.

A.3.2 Non-deterministi starting point

Let us assume now that σ0 6= 0 and onsider Equation (38) again. The term −ω2σ2
0 + θσ2 − θ2σ2

0 never

vanishes on (0,+∞) if θ2σ2
0 − θσ2 ≥ 0.
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First ase: θ2σ2
0 − θσ2 ≥ 0. In this ase (38) gives

tan(ωT ) =
ωσ2

ω2σ2
0 + θ2σ2

0 − θσ2
. (41)

Solutions of this equation are illustrated in Figure 9. We an show that for any n ∈ N
∗
, there is a unique

solution of (41) in

(
nπ
T , nπT + π

2T

)
. Moreover a solution lies in

(
0, π

2T

)
if and only if (θ2σ2

0 − θσ2)T −σ2 < 0.
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Figure 9: (Non-deterministi starting point, θ2σ2
0 − θσ2 ≥ 0). Solutions of (40). (Ornstein-Uhlenbek

proess starting from X0
L∼ N (0, σ2

0), σ0 6= 0.) Parameter values are T = 3, σ = 1, θ = 3 and σ2
0 = 0.4.

Seond ase: θ2σ2
0 − θσ2 < 0. Here, the term −ω2σ2

0 + θσ2 − θ2σ2
0 vanishes for ω = V :=

√
θ σ2

σ2
0
− θ2.

If V is not a solution of (38), (i.e. if V does not belong to

{
π
2T + k π

T |k ∈ N
}
), no other element of this

set is a solution, and everything omes again to the same Equation (41). Solutions of this equation are

illustrated in Figure 10. We an show that there is a unique solution to (38) in eah non-empty interval(
nπ
T , nπT + π

2T

)
∩ (V,∞) and

(
kπ
T − π

2T ,
kπ
T + π

2T

)
∩ (0, V ), k ∈ N

∗
.

In Algorithm 1, we detail the proedure for the omputation of the nth eigenvalue of the Ornstein-

Uhlenbek ovariane operator. The funtion searh(a, left, right) stands for a root �nding method. It

returns the root of Equation (38) that is braketed by [left, right].

A.3.3 A numerial guess for ωn.

We use ψ(x) :=
4(8−π2)x3

π4 +x

1− 4x2

π2

as an approximation of tan(x) on
(
−π

2 ,
π
2

)
. We have ‖ tan−ψ‖(−

π
2 ,π2 )

∞ = 10−π2

2π ≈
0.02075. Plugging this into (40), we obtain

θψ(ωnT + nπ) = −ωn n ≥ 1. (42)

This results into a polynomial equation of degree 3 having a unique (losed-form) solution ωguess
n ∈

(
nπ
T − π

2T ,
nπ
T

)

whih an be used as a starting point for the root �nding proedure.

B Closed-form expression for RY |V in the ases of Brownian motion,

Brownian bridge and Ornstein-Uhlenbek proesses

We use the same notation as in Setion 4.2. In this Setion, we derive losed-form expressions of the matrix

RY |V := (αij)1≤i≤d,0≤j≤n ∈ Md,n(R) orresponding to the a�ne funtion AfY |V de�ned by E[Y |V ] =
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Figure 10: (Non-deterministi starting point, θ2σ2
0 − θσ2 < 0). Solutions of (40). (Ornstein-Uhlenbek

proess starting from X0
L∼ N (0, σ2

0), σ0 6= 0.) Parameter values are T = 3, σ = 1, θ = 3 and σ2
0 = 0.3.

AfY |V (V ), in the ases of Brownian motion, Brownian bridge and Ornstein-Uhlenbek proesses.

In the general ase, this linear least-square minimization an be performed numerially, but this preliminary

stage an beome time-onsuming when the number of simulation dates grows.

If t0 = 0 ≤ t1 ≤ · · · ≤ tn = T is a subdivision of [0, T ], and X is a Gaussian Markov proess, we de�ne the

a�ne funtions f i
j by

E

[∫ T

0

Xse
X
i (s)ds

∣∣∣∣∣Xt0 , . . . , Xtn

]
=

n−1∑

j=0

E

[∫ tj+1

tj

Xse
X
i (s)ds

∣∣∣∣∣Xtj , Xtj+1

]
=: f i

j(Xtj , Xtj+1). (43)

B.1 The ase of Brownian motion

Now, assuming that X = W is a standard Brownian motion on [0, T ], using Equation (43) we obtain, for

tj 6= tj+1, f
i
j(x, y) = E

[∫ tj+1

tj

(
x+

s−tj
tj+1−tj

(y − x) + Y
B,tj+1−tj
s−tj

)
eWi (s)ds

]
, where Y

B,tj+1−tj
s−tj is a standard

Brownian bridge on [tj , tj+1]. Hene,

f i
j(x, y) = x

(∫ tj+1

tj

tj+1 − s
tj+1 − tj

eWi (s)ds

)

︸ ︷︷ ︸
:=Ai

j

+y

(∫ tj+1

tj

s− tj
tj+1 − tj

eWi (s)ds

)

︸ ︷︷ ︸
:=Bi

j

= xAi
j + yBi

j.

Simple algebra leads to

∫ tj+1

tj

eWi (s)ds =

√
2

T

T

π
(
i− 1

2

)
(
cos

(
π

(
i− 1

2

)
tj
T

)
− cos

(
π

(
i− 1

2

)
tj+1

T

))
,

and

∫ tj+1

tj

seWi (s)ds =

√
2

T

T

π
(
i− 1

2

)
(
tj cos

(
π

(
i− 1

2

)
tj
T

)
− tj+1 cos

(
π

(
i− 1

2

)
tj+1

T

))

+

√
2

T

(
T

π
(
i− 1

2

)
)2(

sin

(
π

(
i− 1

2

)
tj+1

T

)
− sin

(
π

(
i− 1

2

)
tj
T

))
.
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Algorithm 1 Ornstein-Uhlenbek eigenvalue (θ, σ, σ0, T, n)

if σ0 = 0 then ⊲ There is a unique solution ωn of (38) in

(
nπ
T − π

2T ,
nπ
T

)
.

searh

(
ωn,

nπ
T − π

2T ,
nπ
T

)
.

else

if (θ2σ2
0 − θσ2) ≥ 0 then ⊲ The vertial asymptote in (41) lies on the left of the origin.

if (θ2σ2
0 − θσ2)T − σ2 < 0 then ⊲ (38) has a unique solution in

(
0, π

2T

)
.

searh

(
ωn,

(n−1)π
T , (n−1)π

T + π
2T

)
.

else ⊲ The smallest positive solution ω1 of (38) lies in
(

π
2T ,

π
T

)
.

searh

(
ωn,

nπ
T , nπT + π

2T

)
.

else ⊲ The vertial asymptote of the right-hand side of (41) lies on the right the origin.

if

(n−1)π
T − π

2T >
√
θ σ2

σ2
0
− θ2 then

searh

(
ωn,

(n−1)π
T , (n−1)π

T + π
2T

)
.

else if

(n+1)π
T − π

2T <
√
θ σ2

σ2
0
− θ2 then

searh

(
ωn,

nπ
T − π

2T ,
nπ
T

)
.

else if

nπ
T − π

2T <
√
θ σ2

σ2
0
− θ2 and

(n+1)π
T − π

2T >
√
θ σ2

σ2
0
− θ2 then

searh

(
ωn,

nπ
T − π

2T ,
√
θ σ2

σ2
0
− θ2

)
.

else

searh

(
ωn,

√
θ σ2

σ2
0
− θ2, nπT − π

2T

)
.

return λn ← σ2

ω2
n+θ2 .

Hene E

[∫ T

0
Wse

W
i (s)ds

∣∣∣Wt1 , . . . ,Wtn

]
=

n−1∑
j=0

Ai
jWtj + Bi

jWtj+1 =
n∑

i=0

αijWti with, for every 1 ≤ j < n,

αij = Ai
j + Bi

j−1, αi0 = Ai
0 and αin = Bi

n−1. Finally, we get the following losed-form expression for

RY |V := (αij)1≤i≤d,0≤j≤n.

• If tj−1 < tj < tj+1,

αij = λWi
(tj+1 − tj−1)e

W
i (tj)− (tj+1 − tj)eWi (tj−1)− (tj − tj−1)e

W
i (tj+1)

(tj+1 − tj)(tj − tj−1)
.

If tj−1 = tj < tj+1, αij = λW
i

(

(

eWi

)′
(tj) −

eWi (tj+1)−eWi (tj)

tj+1−tj

)

.

If tj−1 < tj = tj+1, αij = λW
i

(

eWi (tj)−eWi (tj−1)

tj−tj−1
−

(

eWi

)′
(tj )

)

.

If tj−1 = tj = tj+1, αij = 0.

• αi0 =

{
λWi

((
eWi
)′
(t0)− eWi (t1)−eWi (t0)

t1−t0

)
if t1 6= t0,

0 otherwise.

• αin =

{
λWi

(
eWi (tn)−eWi (tn−1)

tn−tn−1
−
(
eWi
)′
(tn)

)
if tn 6= tn−1,

0 otherwise.

The equality ase is useful when dealing with small time steps that make the numerial evaluation of the

divided di�erenes (eWi (tj+1)− eWi (tj))/(tj+1 − tj) inaurate.
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B.2 The ase of Brownian bridge

If X = B is a standard Brownian bridge on [0, T ], using Equation (43), we get for tj 6= tj+1, f
i
j(x, y) =

E

[∫ tj+1

tj

(
x+

s−tj
tj+1−tj

(y − x) +
(
Y

B,tj+1−tj
s−tj

))
eBi (s)ds

]
, where Y

B,tj+1−tj
s−tj is a standard Brownian bridge on

[tj , tj+1]. Hene, very similarly to the ase of Brownian motion,

f i
j(x, y) = x

(∫ tj+1

tj

tj+1 − s
tj+1 − tj

eBi (s)ds

)

︸ ︷︷ ︸
:=Ai

j

+y

(∫ tj+1

tj

s− tj
tj+1 − tj

eBi (s)ds

)

︸ ︷︷ ︸
:=Bi

j

= xAi
j + yBi

j .

Using that ∫ tj+1

tj

eBi (s)ds =

√
2

T

T

πi

(
cos

(
πi
tj
T

)
− cos

(
πi
tj+1

T

))
,

and

∫ tj+1

tj

seBi (s)ds =

√

2

T

T

πi

(

tj cos

(

πi
tj
T

)

− tj+1 cos

(

πi
tj+1

T

))

+

√

2

T

(
T

πi

)2 (

sin

(

πi
tj+1

T

)

− sin

(

πi
tj
T

))

,

we get E

[∫ T

0
Bse

B
i (s)ds

∣∣∣Bt1 , . . . , Btn

]
=

n−1∑
j=0

(
Ai

jBtj +Bi
jBtj+1

)
=

n∑
i=0

αijBti where, for every 1 ≤ j < n,

αij = Ai
j +Bi

j−1, αi0 = Ai
0 and αin = Bi

n−1. Moreover, we have

Ai
j = λBi

((
eBi
)′
(tj)−

eBi (tj+1)− eBi (tj)
tj+1 − tj

)
, and Bi

j = λBi

(
eBi (tj+1)− eBi (tj)

tj+1 − tj
−
(
eBi
)′
(tj+1)

)
.

Finally we obtain the following losed-form expression for RY |V := (αij)1≤i≤d,0≤j≤n.

• If tj−1 < tj < tj+1,

αij = λBi
(tj+1 − tj−1)e

B
i (tj)− (tj+1 − tj)eBi (tj−1)− (tj − tj−1)e

B
i (tj+1)

(tj+1 − tj)(tj − tj−1)
.

If tj−1 = tj < tj+1, αij = λB
i

(

(

eBi

)′
(tj )−

eBi (tj+1)−eBi (tj)

tj+1−tj

)

.

If tj−1 < tj = tj+1, αij = λB
i

(

eBi (tj)−eBi (tj−1)

tj−tj−1
−

(

eBi

)′
(tj )

)

.

If tj−1 = tj = tj+1, αij = 0.

• αi0 =

{
λBi

((
eBi
)′
(t0)− eBi (t1)−eBi (t0)

t1−t0

)
if t1 6= t0,

0 otherwise.

• αin =

{
λBi

(
eBi (tn)−eBi (tn−1)

tn−tn−1
−
(
eBi
)′
(tn)

)
if tn 6= tn−1,

0 otherwise.

Remark. We obtain the same expression as for Brownian motion, where (eWn , λWn ) is replaed with (eBn , λ
B
n ).
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B.3 The ase of entered Ornstein-Uhlenbek proesses

If X is an Ornstein-Uhlenbek proess, solution of the SDE dXt = −θXtdt + σdWt, with X0
L∼ N (0, σ2

0)
independent of W . Consider t0 = 0 ≤ t1 ≤ · · · ≤ tn = T a subdivision of [0, T ]. Using Equation (43) and

the onditional Fubini theorem, we obtain

f j
i (Xtj , Xtj+1) = E

[∫ tj+1

tj

Xse
OU
i (s)ds

∣∣∣∣∣Xtj , Xtj+1

]
=

∫ tj+1

tj

E
[
Xs

∣∣Xtj , Xtj+1

]
eOU
i (s)ds,

Assuming that t0 < t1 < · · · tn, we easily prove that

E
[
Xs

∣∣Xtj , Xtj+1

]
= Xtj

eθ(tj+1−s) − e−θ(tj+1−s)

eθ(tj+1−tj) − e−θ(tj+1−tj)
+Xtj+1

eθ(s−tj) − e−θ(s−tj)

eθ(tj+1−tj) − e−θ(tj+1−tj)
.

Hene

f j
i (x, y) = x

(∫ tj+1

tj

eθ(tj+1−s) − e−θ(tj+1−s)

eθ(tj+1−tj) − e−θ(tj+1−tj)
eOU
i (s)ds

)

︸ ︷︷ ︸

:=Ai
j

+y

(∫ tj+1

tj

eθ(s−tj) − e−θ(s−tj)

eθ(tj+1−tj) − e−θ(tj+1−tj)
eOU
i (s)ds

)

︸ ︷︷ ︸

:=Bi
j

,

where

(
eOU
n

)
n≥1

are the Karhunen-Loève eigenfuntions ofX . Finally, we have E

[∫ T

0
Xse

OU
i (s)ds

∣∣∣Xt1 , . . . , Xtn

]
=

n−1∑
j=0

(
Ai

jXtj +Bi
jXtj+1

)
=

n∑
i=0

αijXti , with for every 1 ≤ j < n, αij = Ai
j +Bi

j−1, αi0 = Ai
0 and αin = Bi

n−1.

B.3.1 The Ornstein-Uhlenbek proess starting from 0

In this ase (σ2
0 = 0), as proved in Appendix A, the Karhunen-Loève eigensystem is

eOU
n (t) :=

1√
T
2 −

sin(2ωnT )
4ωn

sin(ωnt), λOU
n :=

σ2

ω2
n + θ2

, n ≥ 1, (44)

where ωn are the inreasingly sorted positive solutions of θ sin(ωnT ) + ωn cos(ωnT ) = 0. This gives

Ai
j =

−θ
θ2 + ω2

i

(
2eOU

i (tj+1)

eθ(tj+1−tj) − e−θ(tj+1−tj)
− eOU

i (tj)
eθ(tj+1−tj) + e−θ(tj+1−tj)

eθ(tj+1−tj) − e−θ(tj+1−tj)

)
+

1

θ2 + ω2
i

(
eOU
i

)′
(tj),

and

Bi
j =

θ

θ2 + ω2
i

(
eOU
i (tj+1)

eθ(tj+1−tj) + e−θ(tj+1−tj)

eθ(tj+1−tj) − e−θ(tj+1−tj)
− 2eOU

i (tj)

eθ(tj+1−tj) − e−θ(tj+1−tj)

)
− 1

θ2 + ω2
i

(
eOU
i

)′
(tj+1).

The oe�ients (αij)1≤i≤d,0≤j≤n are given by αij = Ai
j + Bi

j−1 for 1 ≤ j < n, αi0 = Ai
0 and αin = Bi

n−1.

The terms involving

(
eOU
i

)′
vanish. Furthermore, we an show that lim

tj+1→tj
Ai

j = 0 and lim
tj−1→tj

Bi
j−1 = 0

and dedue the orresponding formula when some dates in the shedule are equal.

B.3.2 The general Ornstein-Uhlenbek proess

In this ase (σ2
0 > 0), as proved in Appendix A, the Karhunen-Loève eigensystem is given by

eOU
n (t) := Kn

(
ωnσ

2
0 cos(ωnt) +

(
σ2 − θσ2

0

)
sin(ωnt)

)
, λOU

n :=
σ2

ω2
n + θ2

, n ≥ 1, (45)
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where ωn are the inreasingly sorted positive solutions of ωnσ
2 cos(ωnT )+(θσ2−θ2σ2

0−ω2
nσ

2
0) sin(ωnT ) = 0,

and

1

K2
n

=
1

2ωn
σ2
0

(
σ2 − θσ2

0

)
(1− cos(2ωnT )) +

1

2
σ4
0ω

2
n

(
T +

sin(2ωnT )

2ωn

)
+

1

2

(
σ2 − θσ2

0

)2
(
T − sin(2ωnT )

2ωn

)
.

This gives eOU
n (t) := Kn

√
ω2
nσ

4
0 + (σ2 − θσ2

0)
2
sin(ωnt + φn), with φn = arccos

(
σ2−θσ2

0√
ω2

nσ
4
0+(σ2−θσ2

0)
2

)
and

λOU
n := σ2

ω2
n+θ2 , n ≥ 1. Using that for K ∈ R, ω ∈ R

∗
and (ta, tb) ∈ R

2
, we get

∫ tb

ta

exp(Ks) sin(ωs+ φ)ds =
K

K2 + ω2

(

eKtb sin(ωtb + φ)− eKta sin(ωta + φ)
)

−
ω

K2 + ω2

(

eKtb cos(ωtb + φ)− eKta cos(ωta + φ)
)

, (46)

we see that the expressions for (αij)1≤i≤d,0≤j≤n established in Setion B.3.1 remain valid in this ase.
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