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Abstra
t

In this arti
le, we propose several quantization-based strati�ed sampling methods to redu
e the vari-

an
e of a Monte Carlo simulation.

Theoreti
al aspe
ts of strati�
ation lead to a strong link between optimal quadrati
 quantization and

the varian
e redu
tion that 
an be a
hieved with strati�ed sampling. We �rst put the emphasis on the


onsisten
y of quantization for partitioning the state spa
e in strati�ed sampling methods in both �nite

and in�nite dimensional 
ases. We show that the proposed quantization-based strata design has uniform

e�
ien
y among the 
lass of Lips
hitz 
ontinuous fun
tionals.

Then a strati�ed sampling algorithm based on produ
t fun
tional quantization is proposed for path-

dependent fun
tionals of multi-fa
tor di�usions. The method is also available for other Gaussian pro
esses

su
h as Brownian bridge or Ornstein-Uhlenbe
k pro
esses. We derive in detail the 
ase of Ornstein-

Uhlenbe
k pro
esses.

We also study the balan
e between the algorithmi
 
omplexity of the simulation and the varian
e

redu
tion fa
tor.
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ess, Ornstein-Uhlenbe
k bridge, prin
ipal 
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Introdu
tion

The quantization of a random variableX 
onsists of its approximation by a random variable Y taking �nitely

many values. This problem has been initially investigated for its appli
ations to signal transmission and for


ompression issues [8℄. In this 
ontext, quantization is a method of signal dis
retization. The aim is to


hoose the random variable Y so as to minimize the resulting error for a �xed quantization level N .

More re
ently, quantization was introdu
ed in numeri
al probability to devise numeri
al integration

methods [24℄ and to solve multidimensional sto
hasti
 
ontrol problems su
h as the pri
ing of Ameri
an

options [1℄ and swing options [2℄. Optimal quantization has many other appli
ations and extensions in

various �elds su
h as automati
 
lustering (quantization of empiri
al measures) and pattern re
ognition.

Sin
e the early 2000's, the in�nite-dimensional setting has been extensively investigated from both the-

oreti
al and numeri
al viewpoints with a spe
ial attention paid to fun
tional quantization [18, 25℄. Bi-

measurable sto
hasti
 pro
esses are viewed as random variables valued in fun
tional spa
es.

Still Monte Carlo simulations remain the most 
ommon numeri
al method in the �eld of numeri
al

probability. One reason is that it is easy to implement in an industrial 
on�guration. In the industry of

derivatives, banks implement generi
 Monte Carlo frameworks for pri
ing and hedging their positions with

a wide variety of �nan
ial produ
ts and models. Besides, Monte Carlo simulations are easily parallelized.
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Varian
e redu
tion methods 
an be used to dramati
ally redu
e the 
omputation time of a Monte Carlo

simulation, or to in
rease its a

ura
y. The main varian
e redu
tion methods are (adaptive) 
ontrol variate,

pre-
onditioning, importan
e sampling and strati�
ation [9, 17℄. The problem is that these methods may

strongly depend on the payo� or the model and require signi�
ant 
hanges in the pra
ti
al implementation

of the Monte Carlo simulation. Therefore, most pra
titioners do not use the most sophisti
ated methods

ex
ept for marginal 
ases.

In this arti
le, we point out theoreti
al aspe
ts of quantization that idraw a strong link between the

problem of optimal quadrati
 quantization of a random variable and the varian
e redu
tion that 
an be

a
hieved by strati�
ation. We emphasize the 
onsisten
y of quantization for designing strata in strati�ed

sampling methods in both the �nite and in�nite dimensional settings. Then we devise a strati�ed sampling

algorithm based on produ
t fun
tional quantization for path-dependent fun
tionals of multi-fa
tor Brownian

di�usions. We show that this strata design has uniform e�
ien
y among the 
lass of Lips
hitz 
ontinuous

fun
tionals of Brownian motion. The simulation 
ost of the 
onditional path is O(n) where n is the number

of dis
retization dates as in the naive un
onditioned Monte Carlo simulations. In this 
ontext, the proposed

approa
h 
an be 
onsidered as a guided Monte Carlo simulation (see Figure 5). The method is appli
able

with any Gaussian pro
ess as soon as we 
an derive its Karhunen-Loève expansion. This is the 
ase for

Brownian bridge and Ornstein-Uhlenbe
k pro
esses. The spe
ial 
ase of Ornstein-Uhlenbe
k pro
esses is

detailed in Appendix A. The 
ase of the Ornstein-Uhlenbe
k bridge is presented in [6℄.

A very 
ommon situation is the 
ase of Monte Carlo simulations of multi-fa
tor Brownian di�usions

approximated with an Euler dis
retization or another time-dis
retization s
heme. The presented method is

parti
ularly well suited for this 
ase, regardless of how the Brownian paths are used in the model, to drive

the dynami
s of the sto
k pri
e, a volatility pro
ess or a drift term. Fun
tional strati�
ation 
an be used as

a generi
 varian
e redu
tion method whi
h does not require a reimplementation of the whole framework but

only the way it is input with Brownian paths.

The arti
le is organized as follows. Se
tion 1 presents some ne
essary ba
kground on optimal quantization.

The emphasis is on the fun
tional quantization of Gaussian pro
esses. Se
tion 2 brie�y 
overs the �rst

fun
tional quantization-based varian
e redu
tion method that was proposed in [25, 16℄. Se
tion 3 outlines

the links between quantization and strati�
ation with an emphasis on the Gaussian 
ase. The method is

further detailed in the in�nite-dimensional 
ase for Gaussian pro
esses in Se
tion 4. We present a simulation

method for the 
ase of Brownian motion and other examples of Gaussian pro
esses (su
h as Brownian bridge

and Ornstein-Uhlenbe
k pro
esses) that preserves the O(n) simulation 
omplexity where n is the number

of time steps. In Se
tion 5, we provide numeri
al experiments of the method with option pri
ing problems

arising in mathemati
al �nan
e. Appendix A presents the 
omputation of the Karhunen-Loève expansion

of Ornstein-Uhlenbe
k pro
esses. Appendix B presents the derivation of 
losed-form expressions of some

regression matri
es needed for our strati�ed sampling algorithm, in the 
ases of Brownian motion, Brownian

bridge and Ornstein-Uhlenbe
k pro
esses.

1 Ve
tor and fun
tional quantization

1.1 Introdu
tion to quantization of random variables

Let (Ω,A,P) be a probability spa
e and (E, | · |) a re�exive separable Bana
h spa
e. The prin
iple of the

quantization of a random variable X taking its values in E is to approximate X by a random variable Y
taking a �nite number N of values in E. The dis
rete random variable Y is a quantizer of X of level N .

The resulting dis
retization error to be minimized is the Lp
norm of |X − Y |.

min {‖X − Y ‖p, Y : Ω→ E measurable, card(Y (Ω)) ≤ N} . (1)

De�nition 1 (Voronoi partition). Consider N ∈ N
∗
, Γ = {γ1, . . . , γN} ⊂ E and let C = {C1, . . . , CN} be a

Borel partition of E. C is a Voronoi partition asso
iated with Γ if ∀i ∈ {1, . . . , N}, Ci ⊂ {ξ ∈ E, |ξ − γi| =
min

j∈{1,...,N}
|ξ − γj |}. Ci is 
alled Voronoi 
ell asso
iated with γi in C.

2



.

Proposition 1.1. Let X and Y be two random variables valued in E, where Y takes its values in the �xed set

of knots Γ = {γ1, . . . , γN} ⊂ E for N ∈ N
∗
. We de�ne X̂Γ := ProjΓ(X) where ProjΓ =

N∑
i=1

γi1Ci is a nearest

neighbor proje
tion onto Γ. Then we have

∣∣∣X − X̂Γ
∣∣∣ ≤ |X − Y | a.s. and thus

∥∥∥X − X̂Γ
∥∥∥
p
≤ ‖X − Y ‖p.

A 
onsequen
e is that solving (1) amounts to solving the simpler problem

min {‖X − ProjΓ(X)‖p, Γ ⊂ E, card(Γ) ≤ N} .

The quantity ‖X −ProjΓ(X)‖p is 
alled the mean Lp
quantization error. The problem of the existen
e of a

minimum is addressed in [22, 10℄ for the �nite-dimensional 
ase.

• For every N ≥ 1, the mean Lp
quantization error is Lips
hitz 
ontinuous and rea
hes a minimum. An

N -tuple that a
hieves the minimum has pairwise distin
t 
omponents, as soon as card(supp(PX)) ≥ N .

This result stands in the general 
ase of a random variable valued in a re�exive separable Bana
h spa
e [18℄.

• If the support of PX has in�nite 
ardinal, the optimal quantization error de
reases, and 
onverges to

0 as the quantization level N goes to in�nity. In the �nite-dimensional 
ase, and for distributions that

are absolutely 
ontinuous with respe
t to the Lebesgue measure, the rate of 
onvergen
e is ruled by

Theorem 1.2.

Theorem 1.2 (Zador, Lus
hgy, Pagès). • (Sharp rate) Let r > 0 and X : Ω→ R
d ∈ Lr+η(P) for some

η > 0. Let PX(dξ) = φ(ξ)dξ+µ(dξ) be the 
anoni
al de
omposition of PX (µ and the Lebesgue measure

are singular). Then, if φ 6≡ 0, the Lr
quantization error at level N , EN,r satis�es

EN,r(X,R
d) ∼

N→∞
J̃r,d ×

(∫

Rd

φ
d

d+r (u)du

) 1
d+

1
r

×N− 1
d , where J̃r,d ∈ (0,∞). (2)

• (Non-asymptoti
 upper bound) Let d ≥ 1. There exists Cd,r,η ∈ (0,∞) su
h that, for every R
d
-valued

random ve
tor X,

∀N ≥ 1, EN,r(X,R
d) ≤ Cd,r,η‖X‖r+ηN

− 1
d . (3)

The �rst 
laim was stated for the 
ase of distributions with 
ompa
t support by Zador in [28℄. The extension

to general probability distributions in R
d
was developed in [4℄. The �rst mathemati
ally rigorous proof 
an

be found in [10℄. The non-asymptoti
 error bound (3) is proved in [21℄.

In Figure 1, we display the Voronoi partition of a random N -quantizer and an optimal quadrati
 quantizer

of level N for the bivariate normal distribution N (0, I2).

1.2 Self-
onsisten
y of optimal quantizers

We now assume that E is a separable Hilbert spa
e (H, 〈·, ·〉H). We denote by CN (X) the set of L2
optimal

quantizers of X of level N , and by EN (X) the minimal quadrati
 distortion that 
an be a
hieved when

approximating X by a quantizer of level N .

De�nition 2 (Stationarity). A quantizer Y of X is stationary (or self-
onsistent) if

Y = E[X |Y ]. (4)

Proposition 1.3 (Stationarity of L2
optimal quantizers). A quadrati
 optimal quantizer is stationary.

We refer to [10℄ for the proof in the �nite-dimensional setting and to [18℄ for the more general 
ase of

separable Hilbert spa
es. Stationarity is a parti
ularity of the quadrati
 
ase (p = 2). In the general Lp

setting, a similar property involving the notion of p-
enter holds [11℄.
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Figure 1: Voronoi partition of a random quantizer (left) and an optimal quantizer (right) of level N = 48 of
the N (0, I2) distribution.

Proposition 1.4. Let X be an H-valued L2
random variable. Let us denote by DX

N the squared quadrati


quantization error asso
iated with a 
odebook of size N with respe
t to X.

DX
N : HN → R+

Γ = (γ1, . . . , γN ) 7→ E
[

min
1≤i≤N

|X − γi|2H
]
.

The distortion DX
N is | · |H-di�erentiable at N -quantizers Γ ∈ HN

with pairwise distin
t 
omponents and

su
h that boundaries of Voronoi 
ells are PX-negligible

∇DX
N (Γ) = 2

(∫

Ci(Γ)

(γi − ξ)PX(dξ)
)
1≤i≤N

= 2
(
E

[(
X̂Γ −X

)
1{X̂Γ=γi}

])
1≤i≤N

. (5)

Hen
e any Voronoi quantizer asso
iated with a 
riti
al point of DX
N is a stationary quantizer.

We refer to [23℄ for a detailed proof.

De�nition 3 (Centroidal proje
tion). Let C = {C1, . . . , CN} be a Borel partition of H. For 1 ≤ i ≤ N , we

de�ne Gi :=

{
E[X |X ∈ Ci] if P[X ∈ Ci] 6= 0,
0 otherwise,

the 
entroids asso
iated with X and C.

The 
entroidal proje
tion asso
iated with C and X is the appli
ation ProjC,X : x 7→
N∑
i=1

Gi1Ci(x).

1.3 Optimal quantization and prin
ipal 
omponent analysis

For any �nite-dimensional subspa
e U of H , we denote by ΠU the orthogonal proje
tion onto U .

Proposition 1.5. Let U be a �nite-dimensional linear subspa
e of H. Then

EN(X)2 ≤ E

[
|X −ΠU (X)|2

]
+ EN (ΠU (X))2. (6)

Moreover, if an optimal quantizer of X of level N lies in U , we have equality in (6).

We refer to [18℄ for a detailed proof. This allows us to de�ne the quantization dimension of X of level N
by dN (X) := min

{
dim span(Γ),Γ ∈ CN (X)

}
. It follows from Proposition 1.5 that

E2N(X) = min

{
E[‖X −ΠV (X)‖2] + E2N (ΠV (X)),

V ⊂ H linear subspa
e

su
h that dimV ≥ dN (X)

}
.
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1.3.1 Covarian
e operator of a Gaussian measure

De�nition 4. Let X be a 
entered H-valued L2
Gaussian random variable. Its 
ovarian
e operator CX :

H → H is de�ned by CXy = E[〈y,X〉X ].

1. If X is R
d
-valued, the matrix of CX in the 
anoni
al basis is the 
ovarian
e matrix of X.

2. If X = (Xt)t∈[0,T ] is a bi-measurable 
entered pro
ess of 
ovarian
e fun
tion ΓX(s, t) := E[XsXt]
satisfying

∫
[0,T ] ΓX(s, s)ds < +∞, then X 
an be seen as a random variable valued in L2([0, T ], dt)

satisfying E

[
|X |2

]
<∞, and

CXy =

∫

[0,T ]

y(s)ΓX(s, ·)ds, y ∈ L2([0, T ], dt).

In [18℄, it is proved that linear subspa
es U of H spanned by n-stationary quantizers of Gaussian measures


orrespond to prin
ipal subspa
es of X . In other words, they are spanned by the eigenve
tors of CX


orresponding to the largest eigenvalues.

Theorem 1.6. Let Γ be an optimal 
odebook for the Gaussian random variable X, U = span(Γ) and

m = dimU . Then CX(U) = U and E

[
|X −ΠU (X)|2

]
=

∑
j≥m+1

λXj , where λX1 ≥ λX2 ≥ · · · > 0 are the

ordered non-zero eigenvalues of CX (repeated as many times as their multipli
ity). We have

∑

j≥m+1

λXj = inf
{
E

[
|X −ΠV (X)|2

]
, V ⊂ H linear subspa
e, dim V = m

}
.

The minimal quadrati
 distortion EN(X) is given by

EN(X)2 =
∑

j≥m+1

λXj + EN




m⊗

j=1

N
(
0, λXj

)



2

for m ≥ dN (X), (7)

A proof is available in [18℄. This shows that the optimal quantization of a Gaussian pro
ess X boils down

to a �nite-dimensional quantization problem, if the Karhunen-Loève eigensystem (eXn , λ
X
n )n∈N∗

is known.

1.4 Produ
t quantization

Let (en)n∈N∗
be a Hilbert basis of H , and (Nn)n≥1 an integer sequen
e su
h that

∏
n≥1Nn < ∞ (so that

Nn = 1 for large enough n). For every n ∈ N
∗
, we 
onsider a 
odebook of size Nn, Γ

n :=
{
γn1 , . . . , γ

n
Nn

}
⊂ R.

The 
odebook Γ is de�ned as the set of knots in H whose 
oordinates in the base (en)n∈N∗
are the

Cartesian produ
t of the one-dimensional 
odebooks Γn
.

Proposition 1.7 (Case of independent marginals). With the same notation, if we assume that the marginals

of X, (〈X, e1〉, 〈X, e2〉, . . .) are independent, and that for ea
h k ∈ N
∗
, Y k := ProjΓk(〈X, ek〉) is a stationary

quantizer of 〈X, ek〉, then Y = ProjΓ(X) is a stationary quantizer of X.

In the 
ase of independent marginals, optimal produ
t quantization remains stationary and the simple shape

of Voronoi 
ells simpli�es the nearest neighbor sear
h.
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1.5 Numeri
al optimal quantization

Various algorithms have been developed to 
ompute optimal N -grids in the �nite-dimensional setting. A

review of these methods is available in [23℄. Let us mention Lloyd's algorithm for the quadrati
 
ase.

Another approa
h is the sto
hasti
 gradient method whi
h is suggested by the fa
t that the quadrati


distortion fun
tion has an integral representation and is di�erentiable at any N -tuple having pairwise distin
t


omponents and a PX-negligible Voronoi tessellation boundary [24℄.

Equation (5) shows that any Voronoi quantizer asso
iated with a 
riti
al point of DX
N is a stationary

quantizer. In the 
ase of one-dimensional distributions, su
h as the Gaussian distribution, the (tridiagonal)

Hessian of the distortion has a 
losed-form expression. Hen
e, a Newton-Raphson method 
an be easily

implemented. It is thoroughly studied in [24℄ in the Gaussian 
ase and remains the fastest way to 
ompute

L2
optimal quantizers of one-dimensional Gaussian variables.

1.6 Quantization of Gaussian pro
esses

1.6.1 Optimal quantization

From now on, we will assume that X is a bi-measurable Gaussian pro
ess and has a 
ontinuous 
ovarian
e

fun
tion ΓX
and satis�es E

[
|X |2

L2
T

]
=

T∫
0

E[X2
s ]ds <∞.

We have seen in Se
tion 1.3 that in this setting, the L2
optimal quantization X amounts to the quan-

tization of a �nite-dimensional Gaussian ve
tor

m⊗
j=1

N
(
0, λXj

)
for some positive integer m, the quantization

dimension.

Several usual Gaussian pro
esses have expli
it Karhunen-Loève expansions, su
h as Brownian motion,

Brownian bridge and Ornstein-Uhlenbe
k pro
esses and bridges. (The 
ase of a stationary Ornstein-Uhlenbe
k

pro
ess is derived for normalized parameters in the stationary 
ase in [12, p.195℄.) In Appendix A, we derive

the Karhunen-Loève expansion of the Ornstein-Uhlenbe
k pro
ess in the general 
ase (for any value of the

parameters and the initial varian
e). The K-L expansion of the Ornstein-Uhlenbe
k bridge is derived in [6℄.

To the best of our knowedge, no 
losed-form expression is available for fra
tional Brownian motion. In the

arti
le, numeri
al examples will be presented for the following 
ases.

1. Brownian motion on [0, T ]:

eWn (t) :=

√

2

T
sin

(

π(n− 1/2)
t

T

)

, λW
n :=

(
T

π(n− 1/2)

)2

, n ≥ 1. (8)

2. Brownian bridge on [0, T ]:

eBn (t) :=

√

2

T
sin

(

πn
t

T

)

, λB
n :=

(
T

πn

)2

, n ≥ 1. (9)

3. The Ornstein-Uhlenbe
k pro
ess on [0, T ], starting from 0, and de�ned by the SDE

dXt = −θXtdt+ σdWt, (10)

with σ ≥ 0, θ > 0 and W a standard Brownian motion on [0, T ]:

eOU
n (t) :=

1
√

T
2
−

sin(2ωnT )
4ωn

sin(ωnt), λOU
n :=

σ2

ω2
n + θ2

, n ≥ 1, (11)

where (ωn)n≥1 are the in
reasingly sorted positive solutions of θ sin(ωnT ) + ωn cos(ωnT ) = 0 (see Appendix

A).

4. The stationary Ornstein-Uhlenbe
k pro
ess on [0, T ] (see Appendix A).

In Figure 2, we display a quadrati
 N -optimal quantizer of Brownian motion.
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Figure 2: Optimal quantization of Brownian motion on [0, 1].

1.6.2 Produ
t quantization

Thanks to Equation (7), the produ
t quantization of the �nite-dimensional distribution ξ
L∼

m⊗
j=1

N
(
0, λXj

)

yields a stationary quantizer X̂ of X of the form X̂ =
∑
n≥1

√
λXn ξ̂ne

X
n , where ξ̂n is an optimal Nn-quantizer

of ξn and

∏
n≥1

Nn ≤ N, Nn ≥ 1 (so that for large enough n, Nn = 1 and ξ̂n ≡ 0.) The paths 
orresponding

to a multi-index i = {i1, . . . , in, . . .} are of the form χi =
∑
n≥1

√
λXn γ

(Nn)
in

eXn .

Su
h a fun
tional quantizer X̂ is 
alled a K-L produ
t quantizer. Furthermore, we denote by Opq(X,N)
the set of K-L produ
t quantizers of size at most N ofX . In the 
ase of produ
t quantization, the 
ounterpart

of Equation (7) is

E

[
min
i

∣∣X − χi

∣∣2
]
=

m∑

n=1

λXn E

[
min

1≤in≤Nn

∣∣∣ξn − γ(Nn)
in

∣∣∣
2
]
+

∑

n≥m+1

λXn

=

m∑

n=1

λXn

(
E

[
min

1≤in≤Nn

∣∣∣ξn − γ(Nn)
in

∣∣∣
2
]
− 1

)
+ E

[
|X |2L2

T

]
, (12)

where m is the quantization dimension.

1.6.3 Produ
t de
omposition and blind optimization

The minimal quadrati
 error for a K-L produ
t quantizer of level N is the solution of the minimization

problem

EpqN := min
{
E(χ), χ ∈ Opq(X,N)

}
, (13)

where E(χ) is the quadrati
 distortion of the produ
t quantizer χ. Thanks to (12), this 
omes to

min
{ d∑

n=1

λXn ENn (N (0, 1))
2
+
∑

n≥d+1

λXn , N1 × · · · ×Nd ≤ N, d ≥ 1
}
. (14)

A solution of (13) is 
alled an optimal K-L produ
t quantizer.
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The blind optimization pro
edure 
onsists of 
omputing the 
riterion for every possible de
omposition

N1 × · · · × Nd ≤ N , d ≥ 1 and N1 ≥ N2 ≥ · · · . For a given Gaussian pro
ess X , results 
an be kept

o�-line for a future use. The method is more thoroughly des
ribed in [25℄. Optimal de
ompositions for a

wide range of values of N for both Brownian bridge and Brownian motion are available on the web site

www.quantize.maths-fi.
om [26℄ for download. In the 
ase of Ornstein-Uhlenbe
k pro
esses, the optimal

de
omposition depends on the di�usion parameters (σ and θ in (10)) and the maturity.

Some optimal de
ompositions for the stationary Ornstein-Uhlenbe
k pro
ess are given in Table 1.

N Nrec Squared L2
quantization Error Produ
t de
omposition

1 1 1.5 1
10 10 0.65318 5 × 2
100 96 0.40929 6 × 4 × 2 × 2
1000 960 0.29618 10 × 6 × 4 × 2 × 2
10000 9984 0.23150 13 × 8 × 4 × 3 × 2 × 2 × 2

Table 1: Re
ord of optimal produ
t de
ompositions of the stationary 
entered Ornstein-Uhlenbe
k pro
ess

solution of the SDE dXt = −Xtdt+ dWt on [0, 3].

In the following, we will fa
e similar 
ases (other 
riteria than the quadrati
 distortion) where the blind

optimization pro
edure applies.

In Figure 3, we display optimal produ
t quantizers of Brownian motion and Brownian bridge on [0, 1]. In
Figure 4, we display optimal produ
t quantizers of the 
entered Ornstein-Uhlenbe
k pro
ess starting from

X0 = 0 and a stationary Ornstein-Uhlenbe
k on [0, 3].
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Figure 3: Optimal produ
t quantization of Brownian motion (left) and Brownian bridge (right) on [0, 1].

1.6.4 Rate of de
ay of the quantization error

The rate of de
ay of the quadrati
 fun
tional quantization error of Gaussian pro
esses was �rst investigated

in [18℄ and more pre
ise results were then established in [19℄. These results rely on assumptions on the

asymptoti
 behavior of the Karhunen-Loève eigenvalues of the 
onsidered pro
ess.

Let X be a bi-measurable 
entered Gaussian pro
ess on [0, T ] of 
ontinuous 
ovarian
e fun
tion ΓX
and su
h

that

∫ T

0
E[X2

s ]ds <∞. Its Karhunen-Loève eigensystem is denoted by

(
eXn , λ

X
n

)
n≥1

.

Theorem 1.8 (Quadrati
 quantization error asymptoti
s). Assume that λXn ∼ φ(n) as n → ∞, where φ :

(s,∞)→ (0,∞) is a de
reasing fun
tion su
h that lim
x→∞

φ(tx)
φ(x) = t−b

for b > 1 and s > 0. Set ψ(x) := 1
xφ(x) .
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Figure 4: Optimal produ
t quantization of a 
entered Ornstein-Uhlenbe
k pro
ess, starting from X0 = 0
(left) and stationary (right) solution of the SDE dXt = −Xtdt+ dWt, on [0, 3].

Then

EN (X) ∼
((

b

2

)b−1
b

b− 1

)1/2

ψ(log(N))−1/2
as N →∞.

Moreover, the optimal produ
t quantization dimension mX(N) veri�es mX(N) ∼ 2
b log(N) as N → ∞,

and the optimal produ
t quantization error EpqN (X) of level N satis�es

EpqN (X) .

((
b

2

)b−1
b

b− 1
+ C(1)

)1/2

ψ(log(N))−1/2
as N →∞,

where C(1) is a universal positive 
onstant.

A proof is available in [19℄. Despite of the fa
t that optimal produ
t quantization is not asymptoti
ally

optimal, it provides a rate-optimal sequen
es of quantizers. Typi
al rates are ∼
N→∞

log(N)−α
for α > 0. For

Brownian motion, Brownian bridge and Ornstein-Uhlenbe
k pro
esses, we have α = 1
2 .

2 A �rst attempt to quantization-based varian
e redu
tion: quan-

tization as a 
ontrol variate

This method has been originally proposed in [25℄. Let X be an E-value L2
random variable, 
onsider N ∈ N

∗

and let Γ = {y1, . . . , yN} be an N -
odebook. We de�ne a quantizer Y of E by Y := Proj(X) =
N∑
i=1

yi1Ci(X)

where C = {C1, . . . , CN} is a partition of E. At this stage, we do not need Proj to be a nearest neighbor

proje
tion onto Γ.
Let F : E → E be a Lips
hitz 
ontinuous fun
tion. In order to 
ompute E[F (X)], we use that:

E[F (X)] = E [F (Proj(X))] + E [F (X)− F (Proj(X))]

= E [F (Proj(X))]︸ ︷︷ ︸
(a)

+
1

M

M∑

m=1

F
(
X(m)

)
− F

(
Proj

(
X(m)

))

︸ ︷︷ ︸
(b)

+RN,M ,
(15)

where X(m), 1 ≤ m ≤M areM independent 
opies of X , and RN,M is a remainder term de�ned by Equation

(15). Term (a) is 
omputed by quantization-based 
ubature and Term (b) is 
omputed by a Monte Carlo

9



simulation. We have

‖RN,M‖2 =
σ(F (X)− F (Proj(X)))√

M
≤ ‖F (X)− F (Proj(X))‖2√

M
≤ [F ]

Lip

‖X − Proj(X)‖2√
M

.

Furthermore,

√
MRN,M

L→ N
(
0,Var

(
F (X)− F (Proj(X))

))
.

Consequently, in the d-dimensional 
ase, if F is Lips
hitz 
ontinuous and

(
X̂N

)
N∈N

= (ProjN (X))N∈N

is a rate-optimal sequen
e of quantizers of X , then we have

∥∥F (X)− F
(
ProjN (X)

)∥∥
2
≤ [F ]

Lip

CX

N1/d so that

‖RN,M‖2 ≤ [F ]
Lip

CX

M1/2N1/d
.

Likewise, in the 
ase of Brownian motion, if

(
ŴN

)
N≥1

is a rate-optimal sequen
e of quadrati
 K-L

produ
t quantizers of Brownianmotion, if F is a Lips
hitz 
ontinuous fun
tional, then

∥∥∥F (W )− F
(
ŴN

)∥∥∥
2
≤

[F ]
Lip

CW

log(N)1/2
so that

‖RN,M‖2 ≤ [F ]
Lip

CW

M log(N)1/2
.

The bottlene
k of fast nearest neighbor sear
h

• The 
omplexity of the proje
tion: When implementing the quantization-based 
ontrol variate variable

method (15) , for every draw of the Monte Carlo simulation, one has to 
ompute the proje
tion Proj(X(m)).
As a 
onsequen
e, the e�
ien
y of the method is 
onditioned by the e�
ien
y of the proje
tion pro
edure.

When dealing with Voronoi quantization, this is simply the nearest neighbor proje
tion.

The problem of nearest neighbor proje
tion, also known as the post-o�
e problem [15℄, has been widely

investigated in the area of 
omputational geometry. It has been solved near optimally in the low dimensional


ase. Algorithms di�er on their pra
ti
al e�
ien
y on real data sets. For large dimensions, most solutions

have a 
omplexity that is exponential with the dimension, or require a longer query time than the obvious

brute for
e algorithm. In fa
t for dimension d > logN , a brute for
e algorithm is usually the best 
hoi
e.

Still, even in low dimension, fast nearest neighbor sear
h is a 
riti
al part of the algorithm. Let us mention

[5℄ for a fast nearest neighbor sear
h algorithm based on re
ursive ve
tor quantization.

The speed of the proje
tion 
an also be in
reased by relaxing the hypothesis that the proje
tion onto the

quantizer is a nearest neighbor proje
tion or by 
hoosing simpler partitions of the state spa
e.

• The fun
tional 
ase: The problem of nearest neighbor sear
h is even less tra
table in the fun
tional 
ase,

as one does not simulate the whole traje
tory of the sto
hasti
 pro
ess but only its marginals at dis
rete

dates, and therefore we 
an only make an assumption on the interpolation to 
ompute the nearest neighbor.

In [16℄, a fun
tional quantizer of Brownian motion is used as a 
ontrol variate variable.

3 Appli
ation of quantization to strati�
ation

3.1 Some ba
kground on strati�ed sampling

The main idea of strati�
ation is to lo
alize the Monte Carlo simulation on the elements of a measurable

partition of the state spa
e of an L2
random variable X : (Ω,A) → (E, E). Let (Ai)i∈I be a �nite E-

measurable partition of E. The sets Ai are 
alled strata. We assume that the weights pi = P (X ∈ Ai), i ∈ I
are positive. We will make two pseudo or operating assumptions on these strata:

• ∀i ∈ I, pi = P(X ∈ Ai) is known.

• ∀i ∈ I, the random variable Xi
L∼ L(X |X ∈ Ai) 
an be simulated at a reasonable 
ost (say similar to

that of X itself).

10



Tra
tability of simulation is a major 
onstraint for pra
ti
al implementation and it has a strong impa
t

on the design of the strata. In pra
ti
e, we 
an formulate the 
ondition by assuming that Xi = φi(U)
where U is uniformly distributed on [0, 1]ri and φi : [0, 1]

ri → R is an easily 
omputable fun
tion. (We have

ri ∈ N ∪ {+∞}, the 
ase ri = +∞ 
orresponds to the a

eptan
e-reje
tion method.)

Let F : (E, E)→ (R,B(R)) su
h that E[|F (X)|] < +∞. We have

E[F (X)] =
∑

i∈I

E[1{X∈Ai}F (X)] =
∑

i∈I

piE[F (X)|X ∈ Ai] =
∑

i∈I

piE[F (Xi)].

The strati�
ation 
on
ept 
omes into play now. LetM be the global budget allo
ated to the 
omputation

of E[F (X)] and letMi = qiM be the budget allo
ated to 
ompute E[F (Xi)] in ea
h stratum (with 0 ≤ qi ≤ 1,
i ∈ I and

∑
i∈I

qi = 1). This leads to de�ne the (unbiased) estimator of E[F (X)]:

F (X)
I

M :=
∑

i∈I

pi
1

Mi

Mi∑

k=1

F
(
Xk

i

)
, (16)

where (Xk
i )1≤k≤Mi is a L(X |X ∈ Ai)-distributed random sample. We have

Var
(
F (X)

I

M

)
=

1

M

∑

i∈I

p2i
qi
σ2
F,i, (17)

where σ2
F,i = Var(F (X)|X ∈ Ai) = Var(F (Xi)), i ∈ I. Optimizing the allo
ation of the number of draws to

the di�erent strata amounts to solving the following minimization problem:

min
(qi)∈PI

∑

i∈I

p2i
qi
σ2
F,i where PI :=

{
(qi)i∈I ∈ R

I
+

∣∣∣∣∣
∑

i∈I

qi = 1

}
. (18)

3.1.1 Natural strati�ed sampling

A natural 
hoi
e is to set

qi = pi, i ∈ I. (19)

sin
e the weights pi are known. Furthermore, this always redu
es the varian
e.

∑

i∈I

p2i
qi
σ2
F,i =

∑

i∈I

piσ
2
F,i =

∑

i∈I

E

[(
F (X)− E[F (X)|X ∈ Ai]

)2
1Ai(X)

]

= ‖F (X)− E[F (X)|σ({X ∈ Ai}, i ∈ I)]‖22
≤ ‖F (X)− E[F (X)]‖22 = Var(F (X)).

3.1.2 Optimal strati�ed sampling

The optimal 
hoi
e is the solution to the 
onstrained minimization problem (18). S
hwarz's inequality yields

∑

i∈I

piσF,i =
∑

i∈I

piσF,i√
qi

√
qi ≤

(∑

i∈I

p2iσ
2
F,i

qi

)1/2(∑

i∈I

qi

)1/2
.

The solution 
orresponds to the equality 
ase in S
hwarz's inequality, that is

q∗i =
piσF,i∑

j∈I

pjσF,j
, i ∈ I (20)

11



with a resulting minimal varian
e of

(∑
i∈I

piσF,i

)2
. At this stage, the problem is that we do not a priori

know the lo
al inertia σ2
F,i. Still, using the fa
t that Lp

norms are de
reasing with p, we see that

σF,i ≥ E

[
|F (X)− E [F (X)|{X ∈ Ai}]|

∣∣∣{X ∈ Ai}
]
,

so that (∑

i∈I

piσF,i

)2

≥
∥∥∥F (X)− E [F (X)|σ({X ∈ Ai}, i ∈ I)]

∥∥∥
2

1
.

In [30℄, Étoré and Jourdain proposed an algorithm whi
h adaptively modi�es the proportion of further

drawings in ea
h stratum and whi
h 
onverges to the optimal allo
ation.

In Se
tion 3.2, we show that the problem of designing good strata, in term of varian
e redu
tion is linked

with optimal quantization. Besides, with quantization-based strati�ed sampling, the weights pi are already
known.

3.2 Quantization and strati�ed sampling

The main drawba
k of using quantization as a 
ontrol variate is the repeated 
omputations of the proje
tions

onto the quantizer. (Nearest neighbor sear
hes in the 
ase of a Voronoi quantizer.) In the 
ase of strati�ed

sampling, one does not have to use a proje
tion pro
edure. Instead, we must fo
us on the 
ost of the

simulation of 
onditional distributions L(X |X ∈ Ai), i ∈ I.
Proposition 3.1 brings together previous results and highlights the relationships with quantization. It

shows that strati�
ation has uniform e�
ien
y among the 
lass of Lips
hitz 
ontinuous fun
tionals.

Proposition 3.1 (Universal strati�
ation). Let A = (Ai)i∈I be a partition of E and let ProjA,X denote the


entroidal proje
tion asso
iated with X and A, de�ned in De�nition 3.

1. Considering the lo
al inertia of X in Ai, σ
2
i = E

[
|X − E[X |X ∈ Ai]|2

∣∣∣X ∈ Ai

]
, we have for every

Lips
hitz 
ontinuous fun
tion F : E → E, σF,i ≤ [F ]
Lip

σi where [F ]
Lip

= sup
x 6=y

F (x)−F (y)
|x−y| , so that

sup
[F ]

Lip

≤1

σF,i = σi, (21)

2. In the 
ase of natural strati�ed sampling (see Se
tion 3.1.1),

sup
[F ]

Lip

≤1

(∑

i∈I

piσ
2
F,i

)
=
∑

i∈I

piσ
2
i =

∥∥∥X − E[X |σ({X ∈ Ai}, i ∈ I)]
∥∥∥
2

2
=
∥∥∥X − ProjA,X(X)

∥∥∥
2

2
. (22)

3. In the 
ase of the optimal 
hoi
e (see Se
tion 3.1.2),

sup
[F ]

Lip

≤1

(∑

i∈I

piσF,i

)2
=
(∑

i∈I

piσi

)2
, (23)

and (∑

i∈I

piσi

)2
≥
∥∥∥X − E[X |σ({X ∈ Ai}, i ∈ I)]

∥∥∥
2

1
=
∥∥∥X − ProjA,X(X)

∥∥∥
2

1
.

4. In the 
ase of real-valued Lips
hitz 
ontinuous fun
tions F : E → R, Equalities (21), (22) and (23)

hold as inequalities.
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Proof: We have

σ2
F,i = Var (F (X)|X ∈ Ai) = E

[
|F (X)− E[F (X)|X ∈ Ai]|2

∣∣∣X ∈ Ai

]

≤ E

[
|F (X)− F (E[X |X ∈ Ai])|2

∣∣∣X ∈ Ai

]
.

Now using that F is Lips
hitz 
ontinuous, we get

σ2
F,i ≤ [F ]2

Lip

1

pi
E

[
|X − E[X |X ∈ Ai]|2 1{X∈Ai}

]
= [F 2]

Lip

σ2
i .

Items 2 and 3 easily follow from Item 1. Equality follows by 
onsidering F = IdE . �

3.2.1 Universal strati�ed sampling

Proposition 3.1 suggests, in the 
ase of Lips
hitz 
ontinuous fun
tionals, to set

qi =
piσi∑

j∈I

pjσj
, j ∈ I,

so that we have uniform e�
ien
y among the 
lass of Lips
hitz 
ontinuous fun
tionals. This allo
ation s
heme

will be further referred to as the �universal strati�
ation� weights. It also shows that, in the Lips
hitz


ontinuous 
ase, it is always bene�
ial to redu
e the quadrati
 distortion asso
iated with the 
entroidal

proje
tion ProjA,X .

Still, this minimization should not be done at the expense of the e�
ien
y of the simulation of the 
orre-

sponding 
onditional distributions. We should rea
h for a balan
e between the e�
ien
y of the simulation in

the strata and the quadrati
 quantization error 
ontrolling the varian
e redu
tion. For example, in Se
tion

4, in the fun
tional 
ase, we will use optimal produ
t quantizers, whi
h are rate optimal (and numeri
ally

near optimal) and allow for a mu
h more e�
ient simulation than real optimal fun
tional quantization.

Remark. We should also mention the adaptive strata design proposed in [29, 14℄.

3.3 Simulation in hyper-re
tangular strata in the independent Gaussian 
ase

Consider X
L∼ N (0, Id), d ≥ 1 and (e1, . . . , ed) an orthonormal basis of R

d
. Let N1, . . . , Nd ≥ 1 be the

number of strata in ea
h dire
tion and for 1 ≤ i ≤ d, −∞ = γi0 ≤ γi1 ≤ · · · ≤ γiNi
= +∞. We de�ne

Ai :=

d⋂

l=1

{
x ∈ R

d
su
h that 〈el, x〉 ∈ [xlil−1, x

l
il ]
}
, i ∈

d∏

l=1

{1, . . . , Nl}.

Then for every i ∈
d∏

l=1

{1, . . . , Nl}, L
(
X
∣∣X ∈ Ai

)
=
⊗d

l=1 L
(
Z
∣∣Z ∈

[
γlil−1, γ

l
il

])
, where Z

L∼ N (0, 1), pi =

P(Ai) =
d∏

l=1

(
N (γlil )−N (γlil−1)

)
and for −∞ ≤ a ≤ b ≤ ∞,

L (Z|Z ∈ [a, b]) = N−1 ((N (b)−N (a))U +N (a)) , U
L∼ U([0, 1]). (24)

4 Fun
tional strati�
ation of Gaussian pro
esses

In the fun
tional 
ase, the state spa
e of the random values are fun
tional spa
es. What is usually done is

to simulate a s
heme to approximate marginals of the underlying pro
ess.
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In this se
tion, we assume that X is a 
entered R-valued bi-measurable Gaussian pro
ess on [0, T ] that

satis�es

∫ T

0
E[X2

t ]dt < ∞. We are interested by the value of E[F (Xt0 , Xt1 , . . . , Xtn)] for some real fun
tion

F , where 0 = t0 ≤ t1 ≤ · · · ≤ tn = T are n+ 1 dates of interest for the underlying pro
ess.

(For example, X 
an be a standard Brownian motion on [0, T ], and one 
omputes the risk-neutral

expe
tation of a path-dependent payo� of a di�usion based on X .)

The results of this se
tion 
an be easily generalized to the multi-dimensional 
ase, like multifa
tor di�u-

sions. Still we restri
t ourselves to the one-dimensional setting for 
larity.

Let us assume that χ ∈ Opq(X,N) is a K-L optimal produ
t quantizer of X . The 
odebook asso
iated

with this produ
t quantizer is the set of the paths of the form

χi =
∑

n≥1

√
λXn γ

(Nn)
in

eXn , i = {i1, . . . , in, . . .},

with the same notation as in Se
tion 1.6.2. We now need to be able to simulate the 
onditional distribution

L(X |X ∈ Ai)

where Ai is the 
ell asso
iated with χi in the 
odebook. To simulate the 
onditional distribution L(X |X ∈
Ai), one will :

• First, simulate the �rst K-L 
oordinates of X , using (24).

• Then simulate the 
onditional distribution of the marginals of the Gaussian pro
ess given its �rst K-L


oordinates.

Remark. We have 
hosen to use K-L optimal produ
t quantizers instead of optimal quantizers be
ause in

this 
ase, the Voronoi 
ells in this are hyper-re
tangles, whi
h allows us to simulate the �rst K-L 
oordinates

more easily than in the general 
ase. Moreover, the rate of de
ay of the quantization errors is rate-optimal

under some 
onditions on the Karhunen-Loève eigenvalues whi
h are veri�ed in the 
onsidered examples [18℄.

4.1 Simulation of marginals of the Gaussian pro
ess, given its d �rst K-L 
oor-

dinates

In this setting, the aim is to simulate the 
onditional distribution

L
(
Xt0 , . . . , Xtn

∣∣∣
∫ T

0

Xse
X
1 (s)ds,

∫ T

0

Xse
X
2 (s)ds, . . . ,

∫ T

0

Xse
X
d (s)ds

)
(25)

where (Xt)t∈[0,T ] is an L2
R-valued Gaussian pro
ess, and (eXk , λ

X
k )k∈N∗

is the Karhunen-Loève system

asso
iated with the pro
essX . Hen
e

(
Xt0 , . . . , Xtn ,

∫ T

0
Xse

X
1 (s)ds, . . . ,

∫ T

0
Xse

X
d (s)ds

)
is a Gaussian ve
tor.

As a 
onsequen
e, if we denote Y :=




∫ T

0 Xse
X
1 (s)ds
.

.

.∫ T

0 Xse
X
d (s)ds


 and V :=




Xt0
.

.

.

Xtn


, the 
onditional distribution

(25) is given by the transition kernel ν(y,A) = N
(
AfV |Y (y), cov(V − E[V |Y ])

)
, where AfV |Y : Rd → R

n
is

an a�ne fun
tion 
orresponding to the linear regression of V on Y , AfV |Y (Y ) := E[V |Y ].

• We have AfV |Y (Y ) = E[V ] + RV |Y Y where RV |Y = cov(V, Y ) cov(Y )−1
. Using that cov(Y ) =(

λXi δij

)
1≤i,j≤d

and cov(V, Y ) = (λXk e
X
k (ti))0≤i≤n,1≤k≤d, we get

RV |Y =
(
eXj (ti)

)
0≤i≤n,1≤j≤d

. (26)
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• The 
ovarian
e matrix is

K := cov (V − E[V |Y ]) = E
[(
V −RV |Y Y

) (
V −RV |Y Y

)]

= cov(V )− 2 cov
(
V,RV |Y Y

)
+ cov

(
RV |Y Y

)
= cov(V )− cov

(
RV |Y Y

)

=

(
cov(Vl, Vk)−

d∑

i=1

λie
X
i (tl)e

X
i (tk)

)

0≤k,l≤n

.

The easiest way to simulate a

ording to this probability distribution would be to use the Cholesky

fa
torization of K. However, when using this method, the simulation of a simple path involves the quadrati



omplexity of an n× n matrix multipli
ation, whi
h is not satisfa
tory for our purpose.

4.2 Faster simulation of 
onditional paths - Bayesian simulation

As pointed out earlier, the naive simulation method for L(V |Y ) requires for ea
h path a multipli
ation by a

Cholesky transform of K whose 
ost is O(n2).

• Yet, the quantization dimension d of the pro
ess is 
lose to log(N) where N is the number of strata,

and n, the number of time steps, is usually very large 
ompared to d.

• The idea here is that the 
onditional distribution L(V |Y ) is determined through the Bayes lemma, by

the 
onditional distribution L(Y |V ) and the two marginal distributions L(V ) and L(Y ).

One knows that V = E[V |Y ]
⊥⊥
+ Z where Z

L∼ N (0, cov(V − E[V |Y ])) is independent of Y . Hen
e one is
able to simulate a

ording to L(V |Y = y) if one 
an simulate the distribution of Z, writing L(V |Y = y) =
E[V |Y = y] + L(Z). This de
omposition 
orresponds to the splitting of the Karhunen-Loève expansion:




V0
.

.

.

Vn


 =

d∑

k=1

√
λXk ξk︸ ︷︷ ︸
=Yk




eXk (t0)
.

.

.

eXk (tn)




︸ ︷︷ ︸
=E[V |Y ]

⊥⊥
+

∑

l≥d+1

√
λXk ξk




eXk (t0)
.

.

.

eXk (tn)




︸ ︷︷ ︸
=Z

.

To simulate Z, one simulates the distribution of V and the 
onditional distribution L(Z|V ).

We have L(Z|V )
L∼ δV − L(E[V |Y ]|V )

L∼ δV −AfV |Y L(Y |V )
L∼ δV −AfV |YN (E[Y |V ], cov(Y − E[Y |V ])).

If AfY |V is the a�ne fun
tion 
orresponding to the regression of Y on V and RY |V its linear part,

cov(Y − E[Y |V ]) = cov(Y ) + cov(E[Y |V ])− 2 cov(Y,E[Y |V ]) = cov(Y )−RY |V cov(V )tRY |V .

This yields Z = V −AfV |Y (G) where G
L∼ N (AfY |V (V ), cov(Y )− RY |V cov(V )tRY |V ). Finally, we 
an use

the following method to simulate the 
onditional distribution of V Y .

• Simulate V . O(n).

• Simulate G
L∼ N

(
AfY |V (V ), cov(Y )−RY |V cov(V )tRY |V

)
O(d× d).

• Compute Z = V −AfV |Y (G). O(d × n).

The random variable T := AfV |Y (y) + Z satis�es T
L∼ L(V |Y = y).
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Let us remind that AfV |Y is trivially de�ned in Equation (26), be
ause 
oordinates of Y are independent.

Other matri
es implied in this algorithm are 
omputed prior to any Monte Carlo simulation. In general, RY |V


an simply be 
omputed by performing a numeri
al least-square regression. Moreover in the spe
ial 
ases of

Brownian motion, Bronian bridge and Ornstein-Uhlenbe
k pro
esses, there are 
losed-form expressions for

the RY |V , whi
h we present in Appendix B.

In the 
ase of Brownian motion, for a uniform time dis
retization mesh tj =
jT
n = jh, 0 ≤ j ≤ n, this yields

RY |V = (αij)1≤i≤d,0≤j≤n, with

• αij = λWi
2eWi (tj)−eWi (tj−1)−eWi (tj+1)

h for j /∈ {0, n},

• αi0 = λWi

( (
eWi
)′
(t0)− eWi (t1)−eWi (t0)

h

)
,

• αin = λWi

(
eWi (tn)−eWi (tn−1)

h −
(
eWi
)′
(tn)

)
.

We now have a very fast and easy way to simulate the 
onditional distribution (25) at our disposal.

In Figures 5 and 6, we plot a few paths of the 
onditional distribution of various Gaussian pro
esses given

that they belong to a given L2
Voronoi 
ell. The appearan
e of the drawing suggests to 
onsider the method

as a �guided Monte Carlo simulation�.
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Figure 5: A few paths of the 
onditional distribution of Brownian motion, given that its path belong to the

L2
Voronoi 
ell of the highlighted 
urve in the quantizer.

4.3 Blind optimization pro
edures for the universal strata design

We have seen in Se
tion 3.2 that the quantity d(χ) =
( ∑

χi∈Γ

piσi

)2
is an upper bound of the varian
e of the

estimator, given in Equation (16) in the 
ase where the fun
tional is 1-Lips
hitz 
ontinuous. Hen
e one may

want to minimize this 
riterion instead of the L2
quantization error. This yields the minimization problem

Dpq
N := min

{
d(χ), χ ∈ Opq(X,N)

}
(27)
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Figure 6: A few paths of the 
onditional distribution of Brownian bridge (left) and the stationary Ornstein-

Uhlenbe
k pro
ess (right), given that its path belong to the L2
Voronoi 
ell of the highlighted 
urve in the

quantizer.

instead of the minimization problem (13).

The same kind of blind optimization pro
edure as in Se
tion 1.6.3 
an be performed. Some values of the

optimal de
omposition for Brownian motion are given in Table 2.

N Nrec d(χ) Produ
t de
omposition

1 1 0.5 1
10 10 9.75689 · 10−2 5 × 2
100 96 5.10548 · 10−2 12 × 4 × 2
1000 966 3.51289 · 10−2 23 × 7 × 3 × 2
10000 9984 2.63721 · 10−2 26 × 8 × 4 × 3 × 2 × 2

Table 2: Re
ord of optimal produ
t de
omposition of Brownian motion with respe
t to the 
riterion (27).

Optimal produ
t de
ompositions for both Brownian bridge and Brownian motion and for a wide range of

values of N are available on the web site www.quantize.maths-fi.
om [26℄ for download. When 
omparing

de
ompositions for levels lesser 11000, we noti
e that in the 
ase of Brownian motion, the optimal de
ompo-

sitions for both 
riteria are �almost� always the same. The only values where de
ompositions di�er are the

ranges 270− 271 and 3328− 3359, and even then, the two 
riteria result in similar de
ompositions. Hen
e

in pra
ti
e, we 
an use the same database for both 
riteria. Nonetheless, in the 
ase of Brownian bridge and

Ornstein-Uhlenbe
k pro
esses, the optimal de
ompositions resulting from the two 
riteria di�er more often.

4.4 Fun
tional strati�
ation of solutions of sto
hasti
 di�erential equations

We 
onsider the SDE

dFt = b(t, Ft)dt+ σ(t, Ft)dXt, t ∈ [0, T ], F0 = f0 (28)

where X is a 
entered 
ontinuous Gaussian semimartingale starting from 0 and where b and σ are Borel

fun
tions, Lips
hitz 
ontinuous in x uniformly in t ∈ [0, T ] su
h that |b(·, 0)|+ |σ(·, 0)| is bounded over [0, T ].
In this situation, (28) admits a unique strong solution X and sup

t∈[0,T ]

|Xt| has r-moments for every r ∈ (0,∞).

Remark. In this 
ase, thanks to Fernique's theorem, the 
ontinuity assumption on the Gaussian pro
ess

ensures that

∫ T

0
E[X2

s ]ds <∞ and the 
ontinuity of the 
ovarian
e fun
tion, (see [13, VIII.3℄).

The most 
ommon approa
h to perform a Monte Carlo simulation with the solution of su
h a sto
hasti


di�erential equation, is to use a dis
retization s
heme like the Euler s
heme [9℄. In this setting, we propose
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to simply repla
e Gaussian pro
ess X by a strati�ed version of X in the Euler s
heme. This approa
h is

justi�ed in many ways:

1. In [7℄, using �ltration enlargement te
hniques, it is proved that under some additional hypothesis on

the Gaussian semimartingale X , its 
onditional distribution in a strata is still a semimartingale with

respe
t to its own �ltration. This additional hypothesis is satis�ed by Brownian motion, Brownian

bridge and Ornstein-Uhlenbe
k pro
esses. Therefore, plugging the strati�ed Euler s
heme into the

SDE amounts to using the Euler s
heme of these 
onditional sto
hasti
 di�erential equations.

2. In the one-dimensional setting, if we make the additional hypothesis that σ ∈ C1([0, T ] × R,R) is

positive and bounded, as soon as the drift of the Lamperti transform of the SDE (28) is Lips
hitz


ontinuous, the unique strong solution of (28), seen as a fun
tional of the underlying Gaussian pro
ess

X is ‖ · ‖p-Lips
hitz 
ontinuous [20℄. Hen
e we 
an apply the results of Se
tion 3.2 on universal

strati�
ation for Lips
hitz 
ontinuous fun
tionals.

3. The fun
tion (Xt0 , . . . , Xtn) 7→
(
Xt1 −Xt0 , . . . , Xtn −Xtn−1

)
that maps the marginals of Brownian

motion to the 
orresponding in
rements used in the Euler s
heme, is a linear map from R
n+1

to R
n

and thus Lips
hitz 
ontinuous as well.

5 Appli
ation to option pri
ing

The spe
ial 
ase of Brownian motion allows us to use fun
tional strati�
ation as a generi
 varian
e redu
tion

method for the 
ase of fun
tionals of Brownian di�usions, even in the multidimensional 
ase, regardless of

how the Brownian paths are 
orrelated or used afterwards, to drive the di�usion of an underlying sto
k,

a sto
hasti
 volatility pro
ess or a dis
ount fa
tor. As it only impa
ts how the Monte Carlo simulation is

input with Brownian paths, our approa
h is easier to implement in a pra
ti
al setting than adaptive varian
e

redu
tion methods, whi
h generally require a 
ontrol loop.

In this se
tion, we study the performan
e of our method in simple one-dimensional 
ases. We begin with

the 
ase of a 
ontinuous-time Up-In Call option in the Bla
k and S
holes model, for whi
h a 
losed-form

expression is known, and used as a Ben
hmark.

5.1 Ben
hmark with an Up-In Call in the Bla
k and S
holes model

We evaluate our method in the 
ase of a path dependent option where a referen
e value 
an easily be


omputed: an Up-In Call barrier option in the Bla
k and S
holes model. For the sake of simpli
ity, we

assume that there is no drift (no interest rate and no dividend). There is a 
losed-form expression for the


ontinuous barrier option pri
e, but we must resort to a numeri
al approximation [3℄ (yet very a

urate) on

that 
losed-form expression to get the pri
e in the 
ase of dis
rete dates for the barrier. The total size of the

Monte Carlo sample is 100000 in every 
ase.

We pri
e the Up-In Call option with di�erent values of the initial spot S, the strike K, the barrier H ,

the volatility σ, the maturity T , and the number of �xing dates for the dis
rete barrier n. In every 
ase, a

95% 
on�den
e interval is given. So is the varian
e of the estimator.

The numeri
al results are reported in Table 3 when using the method with 20 stratas and Table 4 when

using the method with 100 stratas. In this tables, the �rst 
olumn 
orrespond to Broadie and Glasserman's


losed-form expression proxy. The se
ond one 
orresponds to a simple Monte Carlo estimator. The last

three 
olumns 
orrespond to strati�ed sampling estimators with di�erent simulation allo
ation strategies.

The �natural weights� 
olumn stands for the allo
ation budget of Equation (19). The �Lip.-optimal

weights� 
olumn stand for the �universal strati�
ation� budget allo
ation proposed in Se
tion 3.2. In these

two 
ases, we have an expli
it allo
ation rule whi
h does not depend on the payo� fun
tion. The last 
olumn,

�optimal weights� 
orresponds to an estimation of the optimal budget allo
ation given in Equation (20).
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Parameter Broadie & Simple Strat. estimator Strat. estimator Strat. estimator

Values Glasserman's estimator natural weights Lip.-optimal weights optimal weights

proxy

S = 100, K = 100 14.0379 13.9281 13.9283 13.9364
H = 125, σ = 0.3, 13.9597 [13.8705, 14.2053] [13.8491, 14.0071] [13.8519, 14.0047] [13.8827, 13.9901]
T = 1.5, n = 365 Var = 729.2518 Var = 162.4650 Var = 151.9481 Var = 75.1319
S = 100, K = 100 1.4206 1.3659 1.3510 1.3602
H = 200, σ = 0.3, 1.3665 [1.3442, 1.4969] [1.3106, 1.4211] [1.3039, 1.3981] [1.3472, 1.3732]
T = 1, n = 365 Var = 151.6366 Var = 79.5118 Var = 57.7425 Var = 4.4053

Table 3: Numeri
al results for the Up-In Call option, with 20 stratas.

Parameter Broadie & Simple Strat. estimator Strat. estimator Strat. estimator

Values Glasserman's estimator natural weights Lip.-optimal weights optimal weights

proxy

S = 100, K = 100 14.0379 13.9382 13.9511 13.9483
H = 125, σ = 0.3, 13.9597 [13.8705, 14.2053] [13.8720, 14.0043] [13.8874, 14.0150] [13.9047, 13.9919]
T = 1.5, n = 365 Var = 729.2518 Var = 114.0634 Var = 105.8760 Var = 49.5071
S = 100, K = 100 1.4206 1.3296 1.3493 1.3611
H = 200, σ = 0.3, 1.3665 [1.3442, 1.4969] [1.2825, 1.3768] [1.3093, 1.3893] [1.3508, 1.3715]
T = 1, n = 365 Var = 151.6366 Var = 57.8899 Var = 41.6666 Var = 2.8099

Table 4: Numeri
al results for the Up-In Call option, with 100 stratas.

5.2 Test with an Auto-Call in the CEV model

We assume that the sto
k follows a CEV model with no drift dSt = σS
β
2
t dWt, 0 < β < 2. We used the

Euler s
heme on ln(St), whi
h satis�es the SDE d ln(St) = −σ2

2 S
β−2
t dt+ σS

β
2 −1
t dWt.

Des
ription of the Auto-Call payo�:

Let St be the sto
k pri
e and 0 = t0 < t1 < · · · < tn = T be the observation dates. K and H are the

�strike� and the �barrier� values. P denotes the �nominal�, and C a zero-
oupon bond of maturity T .
At the �rst date t1 of the s
hedule, if St1 > K, the holder of the option re
eives (1+C)P and the 
ontra
t

expires. If St1 ≤ K, he waits until the se
ond date of the s
hedule. If St2 > K, the holder gets (1 + C)P
and the 
ontra
t expires. And so on... If St does not rea
h K on [0, T ), the 
ontra
t is exer
i
ed as follows:

if ST > K, the holder gets (1 + C)P . If H < ST ≤ K, the holder gets P and if ST ≤ H , he gets P ST

K .

The numeri
al results are reported in Table 5 when implementing the strati�
ation method with 20 and

50 stratas. The parameters of the model are β = 1.5, S0 = 100, σ = 0.3. For the payo�, K = 110, H = 80,
P = 100, C = 0.07. The 
onsidered observation dates are {1, 2, 3}. The number of time steps in the Euler

s
heme is 300 and the total size of the Monte Carlo sample is 100000 in every 
ase.

Number of strata Simple Strat. estimator Strat. estimator Strat. estimator

estimator natural weights Lip.-optimal weights optimal weights

99.0598 99.0839 99.0886 99.0477
20 [98.9887, 99.1310] [99.0438, 99.1239] [99.0488, 99.1284] [99.0184, 99.0769]

Var = 131.8089 Var = 41.8067 Var = 41.2888 Var = 22.2549
99.0598 99.0507 99.0790 99.0444

50 [98.9887, 99.1310] [99.0129, 99.0886] [99.0414, 99.1166] [99.0179, 99.0709]
Var = 131.8089 Var = 37.3150 Var = 36.8408 Var = 18.2954

Table 5: Numeri
al results for the Auto-Call option in the CEV model, with 20 and 50 stratas.

5.3 Test with an Asian straddle in the one-fa
tor S
hwartz model

Here, we stand in the 
ase of a sto
k whi
h follows the following SDE:

dSt = θ(α − lnSt)Stdt+ σStdWt, (29)
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under the risk-neutral probability. The sto
hasti
 pro
ess X = ln(S) is an Ornstein-Uhlenbe
k pro
ess:

dXt = θ(µ−Xt)dt+ σdWt with µ = α− σ2

2θ
. (30)

This model was proposed by S
hwartz in [27℄. Su
h exponentials of Ornstein-Uhlenbe
k pro
esses are


ommonly met in 
ommodity derivatives. One parti
ularity in these markets is that the spot is generally not

dire
tly traded. Therefore, the underlyings of derivatives are generaly futures. Still, we use this one-fa
tor

�toy� model as a simple 
ase study for our varian
e redu
tion method.

The 
onsidered payo� is an Asian straddle option on a dis
rete s
hedule of observation dates t0 < · · · <
tn = T . K is the �strike� of the option whose payo� is

∣∣∣∣ 1
n+1

n∑
k=0

Stk −K
∣∣∣∣.

We perform a fun
tional strati�ed sampling of the Ornstein-Uhlenbe
k pro
ess. Optimal produ
t de
om-

positions for the 
riterion (27) are used and available in Table 6 where the numeri
al results are reported.

The parameters are S0 = 100, θ = 0.3, α = ln(110), σ = 0.3 and K = 100. The total size of the Monte

Carlo sample is 100000 in every 
ase. The observation dates are

(
iTn
)
i={0,...,n}

with T = 3 and n = 36.

Number of strata Simple Strat. estimator Strat. estimator Strat. estimator

and produ
t de
omposition estimator natural weights Lip.-optimal weights optimal weights

17.5393 17.6140 17.6118 17.6240
20 [17.4504, 17.6282] [17.5871, 17.6408] [17.5856, 17.6378] [17.6006, 17.6477]

20 = 10 × 2 Var = 205.9375 Var = 18.8041 Var = 17.5502 Var = 14.6363
17.5393 17.6101 17.6122 17.6147

100 [17.4504, 17.6282] [17.5850, 17.6351] [17.5884, 17.6360] [17.5932, 17.6362]
100 = 10 × 5 × 2 Var = 205.9375 Var = 16.2945 Var = 14.7316 Var = 12.0112

Table 6: Numeri
al results for the Asian straddle option in S
hwartz's model, with 20 and 100 stratas.

To perform this 
omputation, one needs to use a non-
entered Ornstein-Uhlenbe
k quantizer. Building

su
h a quantizer is a straightforward extension of the 
entered 
ase. As showed in Se
tion A, if X is an

Ornstein-Uhlenbe
k pro
ess on [0, T ] following the dynami
 dXt = θ(µ − Xt)dt + σdWt, X0
L∼ N (m0, σ

2
0),

with nonzero values of µ and m0, we have

Xt = m0e
−θt + µ(1− e−θt)︸ ︷︷ ︸

(1)=non-sto
hasti
 path

+

(

entered Ornstein-Uhlenbe
k pro
ess


orresponding to m0 = µ = 0

)
. (31)

In Figure 7, we display the fun
tional produ
t quantizer of a non-
entered Ornstein-Uhlenbe
k pro
ess.

5.4 Comments on the numeri
al results

�Lips
hitz-optimal� strata and weights are not more di�
ult to 
ompute than the �natural� s
heme (19)

sin
e all the involved parameters are known. This strati�ed sampling method does not depend on the payo�

fun
tion but only on the distribution of the underlying asset whi
h means that it 
an be plugged upstream in

the Monte Carlo simulator. In terms of varian
e redu
tion, universal strati�
ation is all the more preforming

as the varian
e of the plain estimator is high, most likely be
ause more strata are �a
tivated�. When the

payo� fun
tion is symmetri
, like with the Asian straddle it a
hieves up to 90% of the varian
e redu
tion

a
hieved by a payo�-dependent dedi
ated method like the one devised in [30℄.

A The Karhunen-Loève expansion of Ornstein-Uhlenbe
k pro
esses

In this se
tion, we derive the Karhunen-Loève expansion of the Ornstein-Uhlenbe
k pro
ess. Proposition

A.3 brings the results together. Se
tion A.3 presents the numeri
al method for 
omputing this expansion.
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Figure 7: Fun
tional 10×2-produ
t quantizer of an Ornstein-Uhlenbe
k pro
ess starting from X0 = 6 de�ned
by the di�usion dXt = θ(µ−Xt)dt+ σdWt with µ = 5, σ = 0.3 and θ = 0.8 on [0, 3].

A.1 The Ornstein-Uhlenbe
k pro
ess

The Ornstein-Uhlenbe
k pro
ess is de�ned by the SDE

dXt = θ(µ−Xt)dt+ σdWt, with σ ≥ 0 and θ > 0, (32)

whi
h gives

Xt = X0e
−θt + µ(1− e−θt) +

∫ t

0

σeθ(s−t)dWs. (33)

We assume that X0 is Gaussian (X0
L∼ N (m0, σ

2
0)) and independent from W . We have E[Xt] = m0e

−θt +

µ(1 − e−θt) and cov(Xs, Xt) =
σ2

2θ e
−θ(s+t)

(
e2θmin(s,t) − 1

)
+ σ2

0e
−θ(s+t). Moreover lim

t→∞
Var(Xt) =

σ2

2θ (the

long-term varian
e). If the initial varian
e σ2
0 is equal to long-term varian
e

σ2

2θ , X is stationary and the


ovarian
e fun
tion is given by cov(Xs, Xt) =
σ2

2θ e
−θ|s−t|

. The total varian
e of the pro
ess on [0, T ] is

‖X‖22 =
∫ T

0

Var(Xs)ds =
σ2T

2θ
+

(
σ2
0 −

σ2

2θ

)(
1

2θ
− e−2θT

2θ

)
.

A.2 The Ornstein-Uhlenbe
k 
ovarian
e operator

The Ornstein-Uhlenbe
k 
ovarian
e operator is given by

TOUf(t) =

∫ T

0

σ2

2θ
e−θ(s+t)

(
e2θmin(s,t) − 1

)
f(s)ds+

∫ T

0

σ2
0e

−θ(s+t)f(s)ds. (34)

Computing the Karhunen-Loève expansion of the Ornstein-Uhlenbe
k pro
ess

TOU
is a 
ompa
t Hermitian positive operator on the separable Hilbert spa
e L2([0, T ]). Hen
e there exists

an orthonormal basis 
onsisting of eigenve
tors of TOU
and eigenvalues are real and nonnegative. Moreover∥∥TOU

∥∥2 ≤ σ2T
2θ + σ2

4θ2

(
e−2θT − 1

)
. We have

TOUf(t) =

∫ t

0

σ2

2θ
eθ(s−t)f(s)ds+

∫ T

t

σ2

2θ
eθ(t−s)f(s)ds+

∫ T

0

(

σ2
0 −

σ2

2θ

)

e−θ(s+t)f(s)ds.
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Proposition A.1. If f ∈ C([0, 1]), and if g = TOUf , then

g′′ − θ2g = −σ2f, (35)

with

σ2
0g

′(0) =
(
σ2 − θσ2

0

)
g(0) and g′(T ) = −θg(T ). (36)

Proof:

g(t) =

∫ t

0

σ2

2θ
eθ(s−t)f(s)ds+

∫ T

t

σ2

2θ
eθ(t−s)f(s)ds+

∫ T

0

(

σ2
0 −

σ2

2θ

)

e−θ(s+t)f(s)ds.

g′(t) = −
σ2

2

∫ t

0

eθ(s−t)f(s)ds+
σ2

2

∫ T

t

eθ(t−s)f(s)ds−

(

θσ2
0 −

σ2

2

)∫ T

0

e−θ(s+t)f(s)ds

g′′(t) =
σ2θ

2

(∫ t

0

f(s)eθ(s−t)ds+

∫ T

t

f(s)eθ(t−s)ds

)

+ θ

∫ T

0

(

θσ2
0 −

σ2

2

)

e−θ(s+t)f(s)ds− σ2f(t).

we get g′′(t) = θ2g(t)− σ2f(t). Moreover, Equation (36) 
omes when identifying expressions with t = 0 and t = T .

�

Proposition A.2. Conversely, if g ∈ C2([0, T ]) and if fun
tions f and g satisfy Equations (35) and (36)

then g = TOUf .

Proof: Computing TOUg′′ yields:

TOUg′′(t) =

∫ t

0

σ2

2θ
eθ(s−t)g′′(s)ds+

∫ T

t

σ2

2θ
eθ(t−s)g′′(s)ds+

∫ T

0

(
σ2
0 −

σ2

2θ

)
e−θ(s+t)g′′(s)ds.

An integration by parts yields

TOUg′′ = −σ2
0g

′(0)e−θt − σ2g(t) + σ2

2 g(0)e
−θt −

(
θσ2

0 − σ2

2

)
g(0)e−θt + θ2TOUg(t)

= −σ2g(t) + θ2TOUg(t) thanks to (36).

�
Now, by ne
essary 
onditions, TOUf = λf ⇔ σ2g = λ(θ2g − g′′). We obtain

λg′′ + (σ2 − λθ2)g = 0. (37)

Hen
e the solution of the ordinary di�erential equation (37) on [0, T ] has the form g(t) = A cos(ωt)+B sin(ωt),

with ω =
√

σ2−λθ2

λ ⇔ λ = σ2

ω2+θ2 . Equation (36) yields ωBσ2
0 = (σ2 − θσ2

0)A. Hen
e, we have g(t) =

K
(
ωσ2

0 cos(ωt) + (σ2 − θσ2
0) sin(ωt)

)
, so that Equality (36) yields

ωσ2 cos(ωT ) +
(
−ω2σ2

0 + θσ2 − θ2σ2
0

)
sin(ωT ) = 0. (38)

Conversely, the same 
al
ulation shows that λn ∈
]
0,
∥∥TOU

∥∥
2

]
is an eigenvalue of TOU

if and only if Equality

(38) holds.

Proposition A.3. Finally, if (ωn)n≥1 is the in
reasingly sorted sequen
e of the positive solutions of (38),

the Karhunen-Loève eigensystem

(
eOU
n , λOU

n

)
n≥1

of the Ornstein-Uhlenbe
k pro
ess is

• λOU
n = σ2

ω2
n+θ2 , and

• eOU
n (t) = Kn

(
ωnσ

2
0 cos(ωnt) + (σ2 − θσ2

0) sin(ωnt)
)
for n ≥ 1, where Kn is the normalization 
onstant.

If (σ, σ0) 6= (0, 0), Kn is given by

1/K2
n =

1

2ωn
σ2
0(σ

2 − θσ2
0) (1− cos(2ωnT )) +

1

2
σ4
0ω

2
n

(
T +

1

2ωn
sin(2ωnT )

)

+
1

2
(σ2 − θσ2

0)
2
(
T − 1

2ωn
sin(2ωnT )

)
. (39)
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Case of a deterministi
 starting point: In this 
ase (σ0 = 0), we have

eOU
n (t) =

1√
T
2 −

sin(2ωnT )
4ωn

sin(ωnt).

Stationary 
ase: In the stationary 
ase (σ2
0 = σ2

2θ ), we have e
OU
n (t) = Cn

(
ωn cos(ωnt) + θ sin(ωnt)

)
, where

Cn is the normalization 
onstant. Cn is given by

1/C2
n =

θ

2

(
1− cos(2ωnT )

)
+
ω2
n

2

(
T +

sin(2ωnT )

2ωn

)
+
θ2

2

(
T − sin(2ωnT )

2ωn

)
.

A.3 Numeri
al 
omputation of the Karhunen-Loève expansion of the Ornstein-

Uhlenbe
k pro
ess

This se
tion fo
uses on the 
omputation of the positive solutions to (38).

A.3.1 Deterministi
 starting point

In this 
ase (σ0 = 0), we 
an 
he
k that elements of

{
π
2T + k π

T , k ∈ N
}
are not solutions of Equation (38).

As a 
onsequen
e, the equation 
omes to

θ tan(ωT ) = −ω. (40)

The 
ase where θ = 0 
omes to the 
ase of Brownian motion, hen
e we assume that θ 6= 0. Solutions of

this equation are illustrated in Figure 8. We 
an show that there is a unique solution ωn in ea
h interval(
nπ
T − π

2T ,
nπ
T

)
, for n ∈ {1, 2, . . .} and that lim

n→∞
ωn −

(
nπ
T − π

2T

)
= 0.

PSfrag repla
ements

ω1 ω2 ω3 ω4

0

0

tan(ωT )
−ω/θ

π
2T

π
2T + π

T
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2T + 2π
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π
2T + 3π

T

Figure 8: (Deterministi
 starting point). Solutions of (40). (Ornstein-Uhlenbe
k pro
ess starting from

a �xed point X0, σ0 = 0.) Parameter values are T = 3, σ = 1 and θ = 3.

A.3.2 Non-deterministi
 starting point

Let us assume now that σ0 6= 0 and 
onsider Equation (38) again. The term −ω2σ2
0 + θσ2 − θ2σ2

0 never

vanishes on (0,+∞) if θ2σ2
0 − θσ2 ≥ 0.
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First 
ase: θ2σ2
0 − θσ2 ≥ 0. In this 
ase (38) gives

tan(ωT ) =
ωσ2

ω2σ2
0 + θ2σ2

0 − θσ2
. (41)

Solutions of this equation are illustrated in Figure 9. We 
an show that for any n ∈ N
∗
, there is a unique

solution of (41) in

(
nπ
T , nπT + π

2T

)
. Moreover a solution lies in

(
0, π

2T

)
if and only if (θ2σ2

0 − θσ2)T −σ2 < 0.

PSfrag repla
ements
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0

0
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ωσ2
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0−θσ2

π
2T

π
2T + π

T
π
2T + 2π

T
π
2T + 3π

T

Figure 9: (Non-deterministi
 starting point, θ2σ2
0 − θσ2 ≥ 0). Solutions of (40). (Ornstein-Uhlenbe
k

pro
ess starting from X0
L∼ N (0, σ2

0), σ0 6= 0.) Parameter values are T = 3, σ = 1, θ = 3 and σ2
0 = 0.4.

Se
ond 
ase: θ2σ2
0 − θσ2 < 0. Here, the term −ω2σ2

0 + θσ2 − θ2σ2
0 vanishes for ω = V :=

√
θ σ2

σ2
0
− θ2.

If V is not a solution of (38), (i.e. if V does not belong to

{
π
2T + k π

T |k ∈ N
}
), no other element of this

set is a solution, and everything 
omes again to the same Equation (41). Solutions of this equation are

illustrated in Figure 10. We 
an show that there is a unique solution to (38) in ea
h non-empty interval(
nπ
T , nπT + π

2T

)
∩ (V,∞) and

(
kπ
T − π

2T ,
kπ
T + π

2T

)
∩ (0, V ), k ∈ N

∗
.

In Algorithm 1, we detail the pro
edure for the 
omputation of the nth eigenvalue of the Ornstein-

Uhlenbe
k 
ovarian
e operator. The fun
tion sear
h(a, left, right) stands for a root �nding method. It

returns the root of Equation (38) that is bra
keted by [left, right].

A.3.3 A numeri
al guess for ωn.

We use ψ(x) :=
4(8−π2)x3

π4 +x

1− 4x2

π2

as an approximation of tan(x) on
(
−π

2 ,
π
2

)
. We have ‖ tan−ψ‖(−

π
2 ,π2 )

∞ = 10−π2

2π ≈
0.02075. Plugging this into (40), we obtain

θψ(ωnT + nπ) = −ωn n ≥ 1. (42)

This results into a polynomial equation of degree 3 having a unique (
losed-form) solution ωguess
n ∈

(
nπ
T − π

2T ,
nπ
T

)

whi
h 
an be used as a starting point for the root �nding pro
edure.

B Closed-form expression for RY |V in the 
ases of Brownian motion,

Brownian bridge and Ornstein-Uhlenbe
k pro
esses

We use the same notation as in Se
tion 4.2. In this Se
tion, we derive 
losed-form expressions of the matrix

RY |V := (αij)1≤i≤d,0≤j≤n ∈ Md,n(R) 
orresponding to the a�ne fun
tion AfY |V de�ned by E[Y |V ] =
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Figure 10: (Non-deterministi
 starting point, θ2σ2
0 − θσ2 < 0). Solutions of (40). (Ornstein-Uhlenbe
k

pro
ess starting from X0
L∼ N (0, σ2

0), σ0 6= 0.) Parameter values are T = 3, σ = 1, θ = 3 and σ2
0 = 0.3.

AfY |V (V ), in the 
ases of Brownian motion, Brownian bridge and Ornstein-Uhlenbe
k pro
esses.

In the general 
ase, this linear least-square minimization 
an be performed numeri
ally, but this preliminary

stage 
an be
ome time-
onsuming when the number of simulation dates grows.

If t0 = 0 ≤ t1 ≤ · · · ≤ tn = T is a subdivision of [0, T ], and X is a Gaussian Markov pro
ess, we de�ne the

a�ne fun
tions f i
j by

E

[∫ T

0

Xse
X
i (s)ds

∣∣∣∣∣Xt0 , . . . , Xtn

]
=

n−1∑

j=0

E

[∫ tj+1

tj

Xse
X
i (s)ds

∣∣∣∣∣Xtj , Xtj+1

]
=: f i

j(Xtj , Xtj+1). (43)

B.1 The 
ase of Brownian motion

Now, assuming that X = W is a standard Brownian motion on [0, T ], using Equation (43) we obtain, for

tj 6= tj+1, f
i
j(x, y) = E

[∫ tj+1

tj

(
x+

s−tj
tj+1−tj

(y − x) + Y
B,tj+1−tj
s−tj

)
eWi (s)ds

]
, where Y

B,tj+1−tj
s−tj is a standard

Brownian bridge on [tj , tj+1]. Hen
e,

f i
j(x, y) = x

(∫ tj+1

tj

tj+1 − s
tj+1 − tj

eWi (s)ds

)

︸ ︷︷ ︸
:=Ai

j

+y

(∫ tj+1

tj

s− tj
tj+1 − tj

eWi (s)ds

)

︸ ︷︷ ︸
:=Bi

j

= xAi
j + yBi

j.

Simple algebra leads to

∫ tj+1

tj

eWi (s)ds =

√
2

T

T

π
(
i− 1

2

)
(
cos

(
π

(
i− 1

2

)
tj
T

)
− cos

(
π

(
i− 1

2

)
tj+1

T

))
,

and

∫ tj+1

tj

seWi (s)ds =

√
2

T

T

π
(
i− 1

2

)
(
tj cos

(
π

(
i− 1

2

)
tj
T

)
− tj+1 cos

(
π

(
i− 1

2

)
tj+1

T

))

+

√
2

T

(
T

π
(
i− 1

2

)
)2(

sin

(
π

(
i− 1

2

)
tj+1

T

)
− sin

(
π

(
i− 1

2

)
tj
T

))
.
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Algorithm 1 Ornstein-Uhlenbe
k eigenvalue (θ, σ, σ0, T, n)

if σ0 = 0 then ⊲ There is a unique solution ωn of (38) in

(
nπ
T − π

2T ,
nπ
T

)
.

sear
h

(
ωn,

nπ
T − π

2T ,
nπ
T

)
.

else

if (θ2σ2
0 − θσ2) ≥ 0 then ⊲ The verti
al asymptote in (41) lies on the left of the origin.

if (θ2σ2
0 − θσ2)T − σ2 < 0 then ⊲ (38) has a unique solution in

(
0, π

2T

)
.

sear
h

(
ωn,

(n−1)π
T , (n−1)π

T + π
2T

)
.

else ⊲ The smallest positive solution ω1 of (38) lies in
(

π
2T ,

π
T

)
.

sear
h

(
ωn,

nπ
T , nπT + π

2T

)
.

else ⊲ The verti
al asymptote of the right-hand side of (41) lies on the right the origin.

if

(n−1)π
T − π

2T >
√
θ σ2

σ2
0
− θ2 then

sear
h

(
ωn,

(n−1)π
T , (n−1)π

T + π
2T

)
.

else if

(n+1)π
T − π

2T <
√
θ σ2

σ2
0
− θ2 then

sear
h

(
ωn,

nπ
T − π

2T ,
nπ
T

)
.

else if

nπ
T − π

2T <
√
θ σ2

σ2
0
− θ2 and

(n+1)π
T − π

2T >
√
θ σ2

σ2
0
− θ2 then

sear
h

(
ωn,

nπ
T − π

2T ,
√
θ σ2

σ2
0
− θ2

)
.

else

sear
h

(
ωn,

√
θ σ2

σ2
0
− θ2, nπT − π

2T

)
.

return λn ← σ2

ω2
n+θ2 .

Hen
e E

[∫ T

0
Wse

W
i (s)ds

∣∣∣Wt1 , . . . ,Wtn

]
=

n−1∑
j=0

Ai
jWtj + Bi

jWtj+1 =
n∑

i=0

αijWti with, for every 1 ≤ j < n,

αij = Ai
j + Bi

j−1, αi0 = Ai
0 and αin = Bi

n−1. Finally, we get the following 
losed-form expression for

RY |V := (αij)1≤i≤d,0≤j≤n.

• If tj−1 < tj < tj+1,

αij = λWi
(tj+1 − tj−1)e

W
i (tj)− (tj+1 − tj)eWi (tj−1)− (tj − tj−1)e

W
i (tj+1)

(tj+1 − tj)(tj − tj−1)
.

If tj−1 = tj < tj+1, αij = λW
i

(

(

eWi

)′
(tj) −

eWi (tj+1)−eWi (tj)

tj+1−tj

)

.

If tj−1 < tj = tj+1, αij = λW
i

(

eWi (tj)−eWi (tj−1)

tj−tj−1
−

(

eWi

)′
(tj )

)

.

If tj−1 = tj = tj+1, αij = 0.

• αi0 =

{
λWi

((
eWi
)′
(t0)− eWi (t1)−eWi (t0)

t1−t0

)
if t1 6= t0,

0 otherwise.

• αin =

{
λWi

(
eWi (tn)−eWi (tn−1)

tn−tn−1
−
(
eWi
)′
(tn)

)
if tn 6= tn−1,

0 otherwise.

The equality 
ase is useful when dealing with small time steps that make the numeri
al evaluation of the

divided di�eren
es (eWi (tj+1)− eWi (tj))/(tj+1 − tj) ina

urate.
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B.2 The 
ase of Brownian bridge

If X = B is a standard Brownian bridge on [0, T ], using Equation (43), we get for tj 6= tj+1, f
i
j(x, y) =

E

[∫ tj+1

tj

(
x+

s−tj
tj+1−tj

(y − x) +
(
Y

B,tj+1−tj
s−tj

))
eBi (s)ds

]
, where Y

B,tj+1−tj
s−tj is a standard Brownian bridge on

[tj , tj+1]. Hen
e, very similarly to the 
ase of Brownian motion,

f i
j(x, y) = x

(∫ tj+1

tj

tj+1 − s
tj+1 − tj

eBi (s)ds

)

︸ ︷︷ ︸
:=Ai

j

+y

(∫ tj+1

tj

s− tj
tj+1 − tj

eBi (s)ds

)

︸ ︷︷ ︸
:=Bi

j

= xAi
j + yBi

j .

Using that ∫ tj+1

tj

eBi (s)ds =

√
2

T

T

πi

(
cos

(
πi
tj
T

)
− cos

(
πi
tj+1

T

))
,

and

∫ tj+1

tj

seBi (s)ds =

√

2

T

T

πi

(

tj cos

(

πi
tj
T

)

− tj+1 cos

(

πi
tj+1

T

))

+

√

2

T

(
T

πi

)2 (

sin

(

πi
tj+1

T

)

− sin

(

πi
tj
T

))

,

we get E

[∫ T

0
Bse

B
i (s)ds

∣∣∣Bt1 , . . . , Btn

]
=

n−1∑
j=0

(
Ai

jBtj +Bi
jBtj+1

)
=

n∑
i=0

αijBti where, for every 1 ≤ j < n,

αij = Ai
j +Bi

j−1, αi0 = Ai
0 and αin = Bi

n−1. Moreover, we have

Ai
j = λBi

((
eBi
)′
(tj)−

eBi (tj+1)− eBi (tj)
tj+1 − tj

)
, and Bi

j = λBi

(
eBi (tj+1)− eBi (tj)

tj+1 − tj
−
(
eBi
)′
(tj+1)

)
.

Finally we obtain the following 
losed-form expression for RY |V := (αij)1≤i≤d,0≤j≤n.

• If tj−1 < tj < tj+1,

αij = λBi
(tj+1 − tj−1)e

B
i (tj)− (tj+1 − tj)eBi (tj−1)− (tj − tj−1)e

B
i (tj+1)

(tj+1 − tj)(tj − tj−1)
.

If tj−1 = tj < tj+1, αij = λB
i

(

(

eBi

)′
(tj )−

eBi (tj+1)−eBi (tj)

tj+1−tj

)

.

If tj−1 < tj = tj+1, αij = λB
i

(

eBi (tj)−eBi (tj−1)

tj−tj−1
−

(

eBi

)′
(tj )

)

.

If tj−1 = tj = tj+1, αij = 0.

• αi0 =

{
λBi

((
eBi
)′
(t0)− eBi (t1)−eBi (t0)

t1−t0

)
if t1 6= t0,

0 otherwise.

• αin =

{
λBi

(
eBi (tn)−eBi (tn−1)

tn−tn−1
−
(
eBi
)′
(tn)

)
if tn 6= tn−1,

0 otherwise.

Remark. We obtain the same expression as for Brownian motion, where (eWn , λWn ) is repla
ed with (eBn , λ
B
n ).
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B.3 The 
ase of 
entered Ornstein-Uhlenbe
k pro
esses

If X is an Ornstein-Uhlenbe
k pro
ess, solution of the SDE dXt = −θXtdt + σdWt, with X0
L∼ N (0, σ2

0)
independent of W . Consider t0 = 0 ≤ t1 ≤ · · · ≤ tn = T a subdivision of [0, T ]. Using Equation (43) and

the 
onditional Fubini theorem, we obtain

f j
i (Xtj , Xtj+1) = E

[∫ tj+1

tj

Xse
OU
i (s)ds

∣∣∣∣∣Xtj , Xtj+1

]
=

∫ tj+1

tj

E
[
Xs

∣∣Xtj , Xtj+1

]
eOU
i (s)ds,

Assuming that t0 < t1 < · · · tn, we easily prove that

E
[
Xs

∣∣Xtj , Xtj+1

]
= Xtj

eθ(tj+1−s) − e−θ(tj+1−s)

eθ(tj+1−tj) − e−θ(tj+1−tj)
+Xtj+1

eθ(s−tj) − e−θ(s−tj)

eθ(tj+1−tj) − e−θ(tj+1−tj)
.

Hen
e

f j
i (x, y) = x

(∫ tj+1

tj

eθ(tj+1−s) − e−θ(tj+1−s)

eθ(tj+1−tj) − e−θ(tj+1−tj)
eOU
i (s)ds

)

︸ ︷︷ ︸

:=Ai
j

+y

(∫ tj+1

tj

eθ(s−tj) − e−θ(s−tj)

eθ(tj+1−tj) − e−θ(tj+1−tj)
eOU
i (s)ds

)

︸ ︷︷ ︸

:=Bi
j

,

where

(
eOU
n

)
n≥1

are the Karhunen-Loève eigenfun
tions ofX . Finally, we have E

[∫ T

0
Xse

OU
i (s)ds

∣∣∣Xt1 , . . . , Xtn

]
=

n−1∑
j=0

(
Ai

jXtj +Bi
jXtj+1

)
=

n∑
i=0

αijXti , with for every 1 ≤ j < n, αij = Ai
j +Bi

j−1, αi0 = Ai
0 and αin = Bi

n−1.

B.3.1 The Ornstein-Uhlenbe
k pro
ess starting from 0

In this 
ase (σ2
0 = 0), as proved in Appendix A, the Karhunen-Loève eigensystem is

eOU
n (t) :=

1√
T
2 −

sin(2ωnT )
4ωn

sin(ωnt), λOU
n :=

σ2

ω2
n + θ2

, n ≥ 1, (44)

where ωn are the in
reasingly sorted positive solutions of θ sin(ωnT ) + ωn cos(ωnT ) = 0. This gives

Ai
j =

−θ
θ2 + ω2

i

(
2eOU

i (tj+1)

eθ(tj+1−tj) − e−θ(tj+1−tj)
− eOU

i (tj)
eθ(tj+1−tj) + e−θ(tj+1−tj)

eθ(tj+1−tj) − e−θ(tj+1−tj)

)
+

1

θ2 + ω2
i

(
eOU
i

)′
(tj),

and

Bi
j =

θ

θ2 + ω2
i

(
eOU
i (tj+1)

eθ(tj+1−tj) + e−θ(tj+1−tj)

eθ(tj+1−tj) − e−θ(tj+1−tj)
− 2eOU

i (tj)

eθ(tj+1−tj) − e−θ(tj+1−tj)

)
− 1

θ2 + ω2
i

(
eOU
i

)′
(tj+1).

The 
oe�
ients (αij)1≤i≤d,0≤j≤n are given by αij = Ai
j + Bi

j−1 for 1 ≤ j < n, αi0 = Ai
0 and αin = Bi

n−1.

The terms involving

(
eOU
i

)′
vanish. Furthermore, we 
an show that lim

tj+1→tj
Ai

j = 0 and lim
tj−1→tj

Bi
j−1 = 0

and dedu
e the 
orresponding formula when some dates in the s
hedule are equal.

B.3.2 The general Ornstein-Uhlenbe
k pro
ess

In this 
ase (σ2
0 > 0), as proved in Appendix A, the Karhunen-Loève eigensystem is given by

eOU
n (t) := Kn

(
ωnσ

2
0 cos(ωnt) +

(
σ2 − θσ2

0

)
sin(ωnt)

)
, λOU

n :=
σ2

ω2
n + θ2

, n ≥ 1, (45)
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where ωn are the in
reasingly sorted positive solutions of ωnσ
2 cos(ωnT )+(θσ2−θ2σ2

0−ω2
nσ

2
0) sin(ωnT ) = 0,

and

1

K2
n

=
1

2ωn
σ2
0

(
σ2 − θσ2

0

)
(1− cos(2ωnT )) +

1

2
σ4
0ω

2
n

(
T +

sin(2ωnT )

2ωn

)
+

1

2

(
σ2 − θσ2

0

)2
(
T − sin(2ωnT )

2ωn

)
.

This gives eOU
n (t) := Kn

√
ω2
nσ

4
0 + (σ2 − θσ2

0)
2
sin(ωnt + φn), with φn = arccos

(
σ2−θσ2

0√
ω2

nσ
4
0+(σ2−θσ2

0)
2

)
and

λOU
n := σ2

ω2
n+θ2 , n ≥ 1. Using that for K ∈ R, ω ∈ R

∗
and (ta, tb) ∈ R

2
, we get

∫ tb

ta

exp(Ks) sin(ωs+ φ)ds =
K

K2 + ω2

(

eKtb sin(ωtb + φ)− eKta sin(ωta + φ)
)

−
ω

K2 + ω2

(

eKtb cos(ωtb + φ)− eKta cos(ωta + φ)
)

, (46)

we see that the expressions for (αij)1≤i≤d,0≤j≤n established in Se
tion B.3.1 remain valid in this 
ase.
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